
 INSTITUTE OF MANAGEMENT AND INFORMATION TECHNOLOGY
Subject-PHP & MYSQL(MCA 406E)

RACHANA BEHERA

Email-id: rachanabehera2792@gmail.com

UNIT 1

INTRODUCTION TO PHP:

 Evaluation of PHP:
 The combination of PHP and MySQL is the most convenient approach to dynamic, database-

driven web design, holding its own in the face of challenges from integrated frameworks—

such as Ruby on Rails—that are harder to learn. Due to its open source roots (unlike the

competing Microsoft .NET Framework), it is free to implement and is therefore an extremely

popular option for web development.

 At its most basic level, the request/response process consists of a web browser asking the web

server to send it a web page and the server sending back the page. The browser then takes

care of displaying the page.

(The basic client/server request/response sequence)

mailto:rachanabehera2792@gmail.com

 Each step in the request and response sequence is as follows:

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request for the home page at server.com.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, looks for the web page on its disk.

6. The web page is retrieved by the server and returned to the browser.

7. Your browser displays the web page.

 For dynamic web pages, the procedure is a little more involved, because it may bring both PHP and

MySQL into the mix.

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request to that address for the web server’s home page.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, fetches the home page from its hard disk.

6. With the home page now in memory, the web server notices that it is a file incorporating PHP

scripting and passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains MySQL statements, which the PHP interpreter now passes to the

MySQL database engine.

9. The MySQL database returns the results of the statements to the PHP interpreter.

10. The PHP interpreter returns the results of the executed PHP code, along with the results from the

MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

 PHP:
 PHP is an open-source, interpreted, and object-oriented scripting language that can be

executed at the server-side. PHP is well suited for web development. Therefore, it is used to

develop web applications (an application that executes on the server and generates the

dynamic page.).

 PHP was created by Rasmus Lerdorf in 1994 but appeared in the market in 1995. PHP

7.4.0is the latest version of PHP, which was released on 28 November. Some important

points need to be noticed about PHP are as followed:

 PHP stands for Hypertext Preprocessor.

 PHP is an interpreted language, i.e., there is no need for compilation.

 PHP is faster than other scripting languages, for example, ASP and JSP.

 PHP is a server-side scripting language, which is used to manage the dynamic content

of the website.

 PHP can be embedded into HTML.

 PHP is an object-oriented language.

 PHP is an open-source scripting language.

 PHP is simple and easy to learn language.

 Why use PHP:
 PHP is a server-side scripting language, which is used to design the dynamic web applications

with MySQL database.

 It handles dynamic content, database as well as session tracking for the website.

 You can create sessions in PHP.

 It can access cookies variable and also set cookies.

 It helps to encrypt the data and apply validation.

 PHP supports several protocols such as HTTP, POP3, SNMP, LDAP, IMAP, and many more.

 Using PHP language, you can control the user to access some pages of your website.

 As PHP is easy to install and set up, this is the main reason why PHP is the best language to

learn.

 PHP can handle the forms, such as - collect the data from users using forms, save it into the

database, and return useful information to the user. For example - Registration form.

 PHP Features:
PHP is very popular language because of its simplicity and open source. There are some important

features of PHP given below:

 Performance: PHP script is executed much faster than those scripts which are written in

other languages such as JSP and ASP. PHP uses its own memory, so the server workload and

loading time is automatically reduced, which results in faster processing speed and better

performance.

 Open Source: PHP source code and software are freely available on the web. You can

develop all the versions of PHP according to your requirement without paying any cost. All

its components are free to download and use.

 Familiarity with syntax: PHP has easily understandable syntax. Programmers are

comfortable coding with it.

 Embedded: PHP code can be easily embedded within HTML tags and script.

 Platform Independent: PHP is available for WINDOWS, MAC, LINUX & UNIX operating

system. A PHP application developed in one OS can be easily executed in other OS also.

 Database Support: PHP supports all the leading databases such as MySQL, SQLite, ODBC,

etc.

 Error Reporting -PHP has predefined error reporting constants to generate an error notice or

warning at runtime. E.g., E_ERROR, E_WARNING, E_STRICT, E_PARSE.

 Loosely Typed Language: PHP allows us to use a variable without declaring its data type. It

will be taken automatically at the time of execution based on the type of data it contains on its

value.

 Web servers Support: PHP is compatible with almost all local servers used today like

Apache, Netscape, Microsoft IIS, etc.

 Security: PHP is a secure language to develop the website. It consists of multiple layers of

security to prevent threads and malicious attacks.

 Control: Different programming languages require long script or code, whereas PHP can do

the same work in a few lines of code. It has maximum control over the websites like you can

make changes easily whenever you want.

 By default, PHP documents end with the extension .php. When a web server encounters this

extension in a requested file, it automatically passes it to the PHP processor. To trigger the PHP

commands, you need to learn a new tag. Here is the first part:

<?php

The first thing you may notice is that the tag has not been closed. This is because

entire sections of PHP can be placed inside this tag, and they finish only when the

closing part is encountered, which looks like this:

?>

A small PHP “Hello World” program might look like:

Example: Invoking PHP

<?php

echo "Hello world";

?>

 The Structure of PHP:
 Using Comments:

There are two ways in which you can add comments to your PHP code. The first

turns a single line into a comment by preceding it with a pair of forward slashes:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line of

code from a program that is giving you errors. For example, you could use such a

comment to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its

action, like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which

looks like:

Example: A multiline comment

<?php

/* This is a section

of multiline comments

which will not be

interpreted */

?>

You can use the /* and */ pairs of characters to open and close comments almost

anywhere you like inside your code. Most, if not all, programmers use this construct

to temporarily comment out entire sections of code that do not work or that, for one

reason or another, they do not wish to be interpreted.

 Basic Syntax:
 PHP is quite a simple language with roots in C and Perl, yet it looks more like Java. It is also very

flexible, but there are a few rules that you need to learn about its syntax and structure.

 Semicolons:
You may have noticed in the previous examples that the PHP commands ended with a semicolon,

like this:

$x += 10;

Probably the most common cause of errors you will encounter with PHP is forgetting this

semicolon. This causes PHP to treat multiple statements like one statement, which it is unable to

understand, prompting it to produce a Parse error message.

 The $ symbol:
 The $ symbol has come to be used in many different ways by different programming

languages.

 For example, if you have ever written in the BASIC language, you will have used the $ to

terminate variable names to denote them as strings.

 In PHP, however, you must place a $ in front of all variables. This is required to make the

PHP parser faster, as it instantly knows whenever it comes across a variable.

 Whether your variables are numbers, strings, or arrays, they should all look something like

those in Example.

Example: Three different types of variable assignment

<?php

$mycounter = 1;

$mystring = "Hello";

$myarray = array("One", "Two", "Three");

?>

 PHP leaves you completely free to use (or not use) all the indenting and spacing you like. In

fact, sensible use of whitespace is generally encouraged (along with comprehensive

commenting) to help you understand your code when you come back to it. It also helps other

programmers when they have to maintain your code.

 Defining Variables and Constants:
 Variable:

 Variable-naming rules:
When creating PHP variables, you must follow these four rules:

1. Variable names must start with a letter of the alphabet or the _ (underscore) character.

2. Variable names can contain only the characters a-z, A-Z, 0-9, and _ (underscore).

3. Variable names may not contain spaces. If a variable must comprise more than one word,

it should be separated with the _ (underscore) character (e.g., $user_name).

4. Variable names are case-sensitive. The variable $High_Score is not the same as the

variable $high_score.

 To allow extended ASCII characters that include accents, PHP also supports the bytes from

127 through 255 in variable names. But unless your code will be maintained only by

programmers who are used to those characters, it’s probably best to avoid them, because

programmers using English keyboards will have difficulty accessing them.

 String variables:
Assigning a string value to a variable, like this:

$username = "Fred Smith";

The quotation marks indicate that “Fred Smith” is a string of characters. You must enclose

each string in either quotation marks or apostrophes (single quotes).

echo $username;

Or you can assign it to another variable (photocopy the paper and place the copy inanother

matchbox), like this:

$current_user = $username;

 Example:

<?php //

$username = "Fred Smith";

echo $username;

echo "
";

$current_user = $username;

echo $current_user;

?>

 Numeric variables:
Variables don’t contain just strings—they can contain numbers too.

$count = 17;

You could also use a floating-point number (containing a decimal point); the syntax is the

same:

$count = 17.5;

In PHP, you would assign the value of $count to another variable or perhaps just echo it to the

web browser.

 Arrays:
The equivalent of this in PHP would be the following:

$team = array ('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

The array building code consists of the following construct:

array ();

with five strings inside. Each string is enclosed in apostrophes. If we then wanted to know

who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

The reason the previous statement has the number 3, not 4, is because the first element of a

PHP array is actually the zeroth element, so the player numbers will therefore be 0 through 4.

 PHP $ and $$ Variables:

 The $var (single dollar) is a normal variable with the name var that stores any value

like string, integer, float, etc.

 The $$var (double dollar) is a reference variable that stores the value of the $variable

inside it.

 Example :

1. <?php

2. $x = "abc";

3. $$x = 200;

4. echo $x."
";

5. echo $$x."
";

6. echo $abc;

7. ?>

Output:

abc

200

200

 In the above example, we have assigned a value to the variable x as abc. Value of

reference variable $$x is assigned as 200.

 Now we have printed the values $x, $$x and $abc.

Example:

1. <?php

2. $x="U.P";

3. $$x="Lucknow";

4. echo $x. "
";

5. echo $$x. "
";

6. echo "Capital of $x is " . $$x;

7. ?>

Output:

U.P

Lucknow

Capital of U.P is Lucknow.

 In the above example, we have assigned a value to the variable x as U.P. Value of

reference variable $$x is assigned as Lucknow.

 Now we have printed the values $x, $$x and a string.

Example:

1. <?php Output:

2. $name="Cat"; Cat

3. ${$name}="Dog"; Dog

4. ${${$name}}="Monkey"; Dog

5. echo $name. "
"; Monkey

6. echo ${$name}. "
"; Monkey

7. echo $Cat. "
";

8. echo ${${$name}}. "
";

9. echo $Dog. "
";

10. ?>

 In the above example, we have assigned a value to the variable name Cat. Value of reference

variable ${$name} is assigned as Dog and ${${$name}} as Monkey.

 Now we have printed the values as $name, ${$name}, $Cat, ${${$name}} and $Dog.

 PHP Variable Scope:
The scope of a variable is defined as its range in the program under which it can be accessed. In

other words, "The scope of a variable is the portion of the program within which it is defined and

can be accessed."

PHP has three types of variable scopes:

 Local variable:
 The variables that are declared within a function are called local variables for that

function. These local variables have their scope only in that particular function in which

they are declared. This means that these variables cannot be accessed outside the function,

as they have local scope.

 A variable declaration outside the function with the same name is completely different

from the variable declared inside the function. Let's understand the local variables with

the help of an example:

 File: local_variable1.php

1. <?php

2. function local_var()

3. {

4. $num = 45; //local variable

5. echo "Local variable declared inside the function is: ". $num;

6. }

7. local_var();

8. ?>

Output:

Local variable declared inside the function is: 45

 Global variable:
 The global variables are the variables that are declared outside the function. These variables

can be accessed anywhere in the program.

 To access the global variable within a function, use the GLOBAL keyword before the

variable. However, these variables can be directly accessed or used outside the function

without any keyword. Therefore there is no need to use any keyword to access a global

variable outside the function.

 Let's understand the global variables with the help of an example:

 Example: File: global_variable1.php

1. <?php

2. $name = "Sanaya Sharma"; //Global Variable

3. function global_var()

4. {

5. global $name;

6. echo "Variable inside the function: ". $name;

7. echo "</br>";

8. }

9. global_var();

10. echo "Variable outside the function: ". $name;

11. ?>

Output:
Variable inside the function: Sanaya Sharma

Variable outside the function: Sanaya Sharma

 Static variable:
 It is a feature of PHP to delete the variable, once it completes its execution and memory is

freed. Sometimes we need to store a variable even after completion of function execution.

Therefore, another important feature of variable scoping is static variable. We use the

static keyword before the variable to define a variable, and this variable is called as static

variable.

 Static variables exist only in a local function, but it does not free its memory after the

program execution leaves the scope. Understand it with the help of an example:

 Example: File: static_variable.php

1. <?php

2. function static_var()

3. {

4. static $num1 = 3; //static variable

5. $num2 = 6; //Non-static variable

6. //increment in non-static variable

7. $num1++;

8. //increment in static variable

9. $num2++;

10. echo "Static: " .$num1 ."</br>";

11. echo "Non-static: " .$num2 ."</br>";

12. }

13.

14. //first function call

15. static_var();

16.

17. //second function call

18. static_var();

19. ?>

Output:

Static: 4

Non-static: 7

Static: 5

Non-static: 7

 PHP Constants:
PHP constants are name or identifier that can't be changed during the execution of the script

except for magic constants, which are not really constants. PHP constants can be defined by 2

ways:

1. Using define() function

2. Using const keyword

Constants are similar to the variable except once they defined, they can never be undefined or

changed. They remain constant across the entire program. PHP constants follow the same PHP

variable rules. For example, it can be started with a letter or underscore only.

Conventionally, PHP constants should be defined in uppercase letters.

 PHP constant: define()
 Use the define() function to create a constant. It defines constant at run time.

 Let's see the syntax of define() function in PHP.

define(name, value, case-insensitive)

1. name: It specifies the constant name.

2. value: It specifies the constant value.

3. case-insensitive: Specifies whether a constant is case-insensitive. Default

value is false. It means it is case sensitive by default.

 Let's see the example to define PHP constant using define().

File: constant1.php

1. <?php

2. define("MESSAGE","Hello JavaTpoint PHP");

3. echo MESSAGE;

4. ?>

Output:

Hello JavaTpoint PHP

 Create a constant with case-insensitive name:

File: constant2.php

1. <?php

2. define("MESSAGE","Hello JavaTpoint PHP",true);//not case sensitive

3. echo MESSAGE, "</br>";

4. echo message;

5. ?>

Output:
 Hello JavaTpoint PHP

 Hello JavaTpoint PHP

https://www.javatpoint.com/php-magic-constants

 PHP constant: const keyword
PHP introduced a keyword const to create a constant. The const keyword defines constants at

compile time. It is a language construct, not a function. The constant defined using const

keyword are case-sensitive.

File: constant4.php

1. <?php

2. const MESSAGE="Hello const by JavaTpoint PHP";

3. echo MESSAGE;

4. ?>

Output:

Hello const by JavaTpoint PHP

 Constant() function:
There is another way to print the value of constants using constant() function instead of using

the echo statement.

Syntax: constant (name)

File: constant5.php

1. <?php

2. define("MSG", "JavaTpoint");

3. echo MSG, "</br>";

4. echo constant("MSG");

5. //both are similar

6. ?>

Output:

JavaTpoint

JavaTpoint

 Constant vs Variables

Constant Variables

Once the constant is defined, it can

never be redefined.

A variable can be undefined as well

as redefined easily.

A constant can only be defined

using define() function. It cannot

be defined by any simple

assignment.

A variable can be defined by simple

assignment (=) operator.

There is no need to use the dollar

($) sign before constant during the

assignment.

To declare a variable, always use the

dollar ($) sign before the variable.

Constants do not follow any

variable scoping rules, and they

can be defined and accessed

anywhere.

Variables can be declared anywhere

in the program, but they follow

variable scoping rules.

Constants are the variables whose

values can't be changed throughout

the program.

The value of the variable can be

changed.

By default, constants are global. Variables can be local, global, or

static.

 PHP Data Types:
PHP data types are used to hold different types of data or values. PHP supports 8 primitive data types

that can be categorized further in 3 types:

 Scalar Types:
It holds only single value. There are 4 scalar data types in PHP.

1. boolean

Booleans are the simplest data type works like switch. It holds only two values: TRUE

(1) or FALSE (0). It is often used with conditional statements. If the condition is correct,

it returns TRUE otherwise FALSE.

Example:

1. <?php

2. if (TRUE)

3. echo "This condition is TRUE.";

4. if (FALSE)

5. echo "This condition is FALSE.";

6. ?>

Output:
 This condition is TRUE.

2. Integer

Integer means numeric data with a negative or positive sign. It holds only whole numbers,

i.e., numbers without fractional part or decimal points.

Rules for integer:

o An integer can be either positive or negative.

o An integer must not contain decimal point.

o Integer can be decimal (base 10), octal (base 8), or hexadecimal (base 16).

o The range of an integer must be lie between 2,147,483,648 and 2,147,483,647

i.e.,-2^31 to 2^31.

Example:

1. <?php

2. $dec1 = 34;

3. $oct1 = 0243;

4. $hexa1 = 0x45;

5. echo "Decimal number: " .$dec1. "</br>";

6. echo "Octal number: " .$oct1. "</br>";

7. echo "HexaDecimal number: " .$hexa1. "</br>";

8. ?>

https://www.javatpoint.com/php-data-types#boolean

Output:

Decimal number: 34

Octal number: 163

HexaDecimal number: 69

3. Float

A floating-point number is a number with a decimal point. Unlike integer, it can hold

numbers with a fractional or decimal point, including a negative or positive sign.

Example:

1. <?php

2. $n1 = 19.34;

3. $n2 = 54.472;

4. $sum = $n1 + $n2;

5. echo "Addition of floating numbers: " .$sum;

6. ?>

Output:

Addition of floating numbers: 73.812

4. String

A string is a non-numeric data type. It holds letters or any alphabets, numbers, and even

special characters.

String values must be enclosed either within single quotes or in double quotes. But both

are treated differently. To clarify this, see the example below:

Example:

1. <?php

2. $company = "Javatpoint";

3. //both single and double quote statements will treat different

4. echo "Hello $company";

5. echo "</br>";

6. echo 'Hello $company';

7. ?>

Output:

Hello Javatpoint

Hello $company

 Compound Types:
It can hold multiple values. There are 2 compound data types in PHP.

1. array

An array is a compound data type. It can store multiple values of same data type in a single

variable.

Example:

1. <?php

2. $bikes = array ("Royal Enfield", "Yamaha", "KTM");

3. var_dump($bikes); //the var_dump() function returns the datatype and values

4. echo "</br>";

5. echo "Array Element1: $bikes[0] </br>";

6. echo "Array Element2: $bikes[1] </br>";

7. echo "Array Element3: $bikes[2] </br>";

8. ?>

Output:
array(3) { [0]=> string(13) "Royal Enfield" [1]=> string(6) "Yamaha" [2]=> string(3) "KTM"

}

Array Element1: Royal Enfield

Array Element2: Yamaha

Array Element3: KTM

2. object

Objects are the instances of user-defined classes that can store both values and functions.

They must be explicitly declared.

Example:

1. <?php

2. class bike {

3. function model() {

4. $model_name = "Royal Enfield";

5. echo "Bike Model: " .$model_name;

6. }

7. }

8. $obj = new bike();

9. $obj -> model();

10. ?>

Output:

Bike Model: Royal Enfield

https://www.javatpoint.com/php-data-types#array
https://www.javatpoint.com/php-data-types#object

 Special Types:
There are 2 special data types in PHP.

1. resource

Resources are not the exact data type in PHP. Basically, these are used to store some

function calls or references to external PHP resources. For example - a database call. It

is an external resource.

2. NULL

Null is a special data type that has only one value: NULL. There is a convention of

writing it in capital letters as it is case sensitive.

The special type of data type NULL defined a variable with no value.

Example:

1. <?php

2. $nl = NULL;

3. echo $nl; //it will not give any output

4. ?>

Output:

 OPERATOR AND EXPRESSION:
 PHP Operator is a symbol i.e. used to perform operations on operands. In simple words, operators

are used to perform operations on variables or values.

 An expression is a combination of values, variables, operators, and functions that results in a

value. It’s familiar to anyone who has taken high-school algebra:

y = 3(abs(2x) + 4)

which in PHP would be

$y = 3 * (abs(2 * $x) + 4);

 For example:

$num=10+20;//+ is the operator and 10,20 are operands

In the above example, + is the binary + operator, 10 and 20 are operands and $num is variable.

https://www.javatpoint.com/php-data-types#resource
https://www.javatpoint.com/php-data-types#NULL

 PHP Operators can be categorized in following forms:

 Arithmetic Operators:
 The PHP arithmetic operators are used to perform common arithmetic operations such as

addition, subtraction, etc. with numeric values.

Operator Name Example Explanation

+ Addition $a + $b Sum of operands

- Subtraction $a - $b Difference of operands

* Multiplication $a * $b Product of operands

/ Division $a / $b Quotient of operands

% Modulus $a % $b Remainder of operands

** Exponentiation $a ** $b $a raised to the power $b

 Assignment Operators:
The assignment operators are used to assign value to different variables. The basic assignment

operator is "=".

Operator Name Example Explanation

= Assign $a = $b The value of right operand is assigned to the left

operand.

+= Add then Assign $a += $b Addition same as $a = $a + $b

-= Subtract then Assign $a -= $b Subtraction same as $a = $a - $b

*= Multiply then Assign $a *= $b Multiplication same as $a = $a * $b

/= Divide then Assign

(quotient)

$a /= $b Find quotient same as $a = $a / $b

%= Divide then Assign

(remainder)

$a %=

$b

Find remainder same as $a = $a % $b

https://www.javatpoint.com/php-operators#Arithmetic
https://www.javatpoint.com/php-operators#Assignment

 Bitwise Operators:
The bitwise operators are used to perform bit-level operations on operands. These operators allow

the evaluation and manipulation of specific bits within the integer.

Operator Name Example Explanation

& And $a & $b Bits that are 1 in both $a and $b are set to 1, otherwise0.

| Or (Inclusive or) $a | $b Bits that are 1 in either $a or $b are set to 1

^ Xor (Exclusive or) $a ^ $b Bits that are 1 in either $a or $b are set to 0.

~ Not ~$a Bits that are 1 set to 0 and bits that are 0 are set to 1

<< Shift left $a << $b Left shift the bits of operand $a $b steps

>> Shift right $a >> $b Right shift the bits of $a operand by $b number of places

 Comparison Operators:
Comparison operators allow comparing two values, such as number or string. Below the list of

comparison operators are given:

Operator Name Example Explanation

== Equal $a == $b Return TRUE if $a is equal to $b

=== Identical $a === $b Return TRUE if $a is equal to $b, and they are of same data

type

!== Not identical $a !== $b Return TRUE if $a is not equal to $b, and they are not of

same data type

!= Not equal $a != $b Return TRUE if $a is not equal to $b

<> Not equal $a <> $b Return TRUE if $a is not equal to $b

https://www.javatpoint.com/php-operators#Bitwise
https://www.javatpoint.com/php-operators#Comparison

< Less than $a < $b Return TRUE if $a is less than $b

> Greater than $a > $b Return TRUE if $a is greater than $b

<= Less than or equal

to

$a <= $b Return TRUE if $a is less than or equal $b

>= Greater than or

equal to

$a >= $b Return TRUE if $a is greater than or equal $b

<=> Spaceship $a <=>$b Return -1 if $a is less than $b

Return 0 if $a is equal $b

Return 1 if $a is greater than $b

 Logical Operators:
The logical operators are used to perform bit-level operations on operands. These operators allow

the evaluation and manipulation of specific bits within the integer.

Operator Name Example Explanation

and And $a and $b Return TRUE if both $a and $b are true

Or Or $a or $b Return TRUE if either $a or $b is true

xor Xor $a xor $b Return TRUE if either $ or $b is true but not both

! Not ! $a Return TRUE if $a is not true

&& And $a && $b Return TRUE if either $a and $b are true

|| Or $a || $b Return TRUE if either $a or $b is true

https://www.javatpoint.com/php-operators#Logical

 Incrementing/Decrementing Operators:
The increment and decrement operators are used to increase and decrease the value of a variable.

Operator Name Example Explanation

++ Increment ++$a Increment the value of $a by one, then return $a

$a++ Return $a, then increment the value of $a by one

-- decrement --$a Decrement the value of $a by one, then return $a

$a-- Return $a, then decrement the value of $a by one

 String Operators:
The string operators are used to perform the operation on strings. There are two string operators

in PHP, which are given below:

Operator Name Example Explanation

. Concatenation $a . $b Concatenate both $a and $b

.= Concatenation

and Assignment

$a .= $b First concatenate $a and $b, then assign the

concatenated string to $a, e.g. $a = $a . $b

 Array Operators:
The array operators are used in case of array. Basically, these operators are used to compare the

values of arrays.

Operator Name Example Explanation

+ Union $a + $y Union of $a and $b

== Equality $a == $b Return TRUE if $a and $b have same key/value pair

!= Inequality $a != $b Return TRUE if $a is not equal to $b

=== Identity $a === $b Return TRUE if $a and $b have same key/value pair of same

type in same order

https://www.javatpoint.com/php-operators#Incrementing
https://www.javatpoint.com/php-operators#String
https://www.javatpoint.com/php-operators#Array

!== Non-

Identity

$a !== $b Return TRUE if $a is not identical to $b

<> Inequality $a <> $b Return TRUE if $a is not equal to $b

 Type Operators:
The type operator instanceof is used to determine whether an object, its parent and its derived

class are the same type or not. Basically, this operator determines which certain class the object

belongs to. It is used in object-oriented programming.

1. <?php

2. //class declaration

3. class Developer

4. {}

5. class Programmer

6. {}

7. //creating an object of type Developer

8. $charu = new Developer();

9. //testing the type of object

10. if($charu instanceof Developer)

11. {

12. echo "Charu is a developer.";

13. }

14. else

15. {

16. echo "Charu is a programmer.";

17. }

18. echo "</br>";

19. var_dump($charu instanceof Developer); //It will return true.

20. var_dump($charu instanceof Programmer); //It will return false.

21. ?>

Output:

Charu is a developer.

bool(true) bool(false)

https://www.javatpoint.com/php-operators#Type

 Execution Operators:
 PHP has an execution operator backticks (``). PHP executes the content of backticks as a shell

command. Execution operator and shell_exec() give the same result.

Operator Name Example Explanation

`` backticks echo `dir`; Execute the shell command and return the result.

Here, it will show the directories available in current folder.

 Error Control Operators:
PHP has one error control operator, i.e., at (@) symbol. Whenever it is used with an expression,

any error message will be ignored that might be generated by that expression.

Operator Name Example Explanation

@ at @file ('non_existent_file') Intentional file error

 We can also categorize operators on behalf of operands. They can be categorized in 3 forms:

Unary Operators: works on single operands such as ++, -- etc.

Binary Operators: works on two operands such as binary +, -, *, / etc.

Ternary Operators: works on three operands such as "?:".

DECISIONS AND LOOP:

 Making Decisions:
 PHP conditional statements allow you to make a decision, based upon the result of a

condition. These statements are called as Decision Making Statements or Conditional Statements.

 There are various ways to use if statement in PHP.

1. If Statement:
 PHP if statement allows conditional execution of code. It is executed if condition is true.

If statement is used to executes the block of code exist inside the if statement only if the

specified condition is true.

Syntax

1. if(condition){

2. //code to be executed

3. }

https://www.javatpoint.com/php-operators#Execution
https://www.javatpoint.com/php-operators#Error

 Example:

1. <?php

2. $num=12;

3. if($num<100){

4. echo "$num is less than 100";

5. }

6. ?>

Output:
12 is less than 100

2. If-else Statement:
 PHP if-else statement is executed whether condition is true or false. If-else statement is

slightly different from if statement. It executes one block of code if the specified condition

is true and another block of code if the condition is false.

 Syntax

1. if(condition){

2. //code to be executed if true

3. }

4. else{

5. //code to be executed if false

6. }

 Example

1. <?php

2. $num=12;

3. if($num%2==0){

4. echo "$num is even number";

5. }else{

6. echo "$num is odd number";

7. }

8. ?>

Output:
12 is even number

3. If-else-if Statement:
 The PHP if-else-if is a special statement used to combine

multiple if?.else statements. So, we can check multiple

conditions using this statement.

 Syntax

1. if (condition1){

2. //code to be executed if condition1 is true

3. } elseif (condition2){

4. //code to be executed if condition2 is true

5. } elseif (condition3){

6. //code to be executed if condition3 is true

7.

8. } else{

9. //code to be executed if all given conditions are false

10. }

 Example

1. <?php

2. $marks=69;

3. if ($marks<33){

4. echo "fail";

5. }

6. else if ($marks>=34 && $marks<50) {

7. echo "D grade";

8. }

9. else if ($marks>=50 && $marks<65) {

10. echo "C grade";

11. }

12. else if ($marks>=65 && $marks<80) {

13. echo "B grade";

14. }

15. else if ($marks>=80 && $marks<90) {

16. echo "A grade";

17. }

18. else if ($marks>=90 && $marks<100) {

19. echo "A+ grade";

20. }

21. else {

22. echo "Invalid input";

23. }

24. ?>

Output:
B Grade

4. PHP nested if Statement:
 The nested if statement contains the if block inside another if block. The inner if statement

executes only when specified condition in outer if statement is true.

 Syntax

1. if (condition) {

2. //code to be executed if conditio

n is true

3. if (condition) {

4. //code to be executed if conditio

n is true

5. }

6. }

 Example

1. <?php

2. $a = 34; $b = 56; $c = 45;

3. if ($a < $b) {

4. if ($a < $c) {

5. echo "$a is smaller than $b and $c";

6. }

7. }

8. ?>

Output:

34 is smaller than 56 and 45

5. Switch:
 PHP switch statement is used to execute one

statement from multiple conditions. It works like

PHP if-else-if statement.

 Syntax:

1. switch(expression){

2. case value1:

3. //code to be executed

4. break;

5. case value2:

6. //code to be executed

7. break;

8.

9. default:

10. code to be executed if all cases are not matched; }

 Example:

1. <?php

2. $num=20;

3. switch($num){

4. case 10:

5. echo("number is equals to 10");

6. break;

7. case 20:

8. echo("number is equal to 20");

9. break;

10. case 30:

11. echo("number is equal to 30");

12. break;

13. default:

14. echo("number is not equal to 10, 20 or 30"); }

15. ?>

Output:
number is equal to 20

 Doing Repetitive task with looping:
 PHP for Loop:

 PHP for loop can be used to traverse set of code for the specified number of times. It should

be used if the number of iterations is known otherwise use while loop. This means for loop is

used when you already know how many times you want to execute a block of code.It allows

users to put all the loop related statements in one place.

 Syntax:

1. for(initialization; condition; increment/decrement){

2. //code to be executed

3. }

 Example:

1. <?php

2. for($n=1;$n<=10;$n++){

3. echo "$n
";

4. }

5. ?>

Output:
1

2

3

4

5

6

7

8

9

10

 PHP While Loop:

 PHP while loop can be used to traverse set of code like for loop. The while loop executes a

block of code repeatedly until the condition is FALSE. Once the condition gets FALSE, it

exits from the body of loop.

 It should be used if the number of iterations is not known. The while loop is also called

an Entry control loop because the condition is checked before entering the loop body. This

means that first the condition is checked. If the condition is true, the block of code will be

executed.

 Syntax

1. while(condition){

2. //code to be executed

3. }

Alternative Syntax

1. while(condition):

2. //code to be executed

3.

4. endwhile;

 Example

1. <?php

2. $n=1;

3. while($n<=10){

4. echo "$n
";

5. $n++;

6. }

7. ?>

Output:

1

2

3

4

5

6

7

8

9

10

 PHP do-while loop:
 PHP do-while loop can be used to traverse set of code like php while loop. The PHP do-while

loop is guaranteed to run at least once.

 The PHP do-while loop is used to execute a set of code of the program several times. If you

have to execute the loop at least once and the number of iterations is not even fixed, it is

recommended to use the do-while loop.

 It executes the code at least one time always because the condition is checked after executing

the code.

 The do-while loop is very much similar to the while loop except the condition check. The

main difference between both loops is that while loop checks the condition at the beginning,

whereas do-while loop checks the condition at the end of the loop.

 Syntax

1. do{

2. //code to be executed

3. }while(condition);

 Example

1. <?php

2. $n=1;

3. do{

4. echo "$n
";

5. $n++;

6. }while($n<=10);

7. ?>

Output:

1

2

3

4

5

6

7

8

9

10

 PHP foreach loop:
 The foreach loop is used to traverse the array elements. It works only on array and object. It

will issue an error if you try to use it with the variables of different datatype.

 The foreach loop works on elements basis rather than index. It provides an easiest way to

iterate the elements of an array.

 In foreach loop, we don't need to increment the value.

 Syntax

1. foreach ($array as $value) {

2. //code to be executed

3. }

There is one more syntax of foreach loop.

Syntax

1. foreach ($array as $key => $element) {

2. //code to be executed

3. }

 Example: PHP program to print array elements using foreach loop.

1. <?php

2. //declare array

3. $season = array ("Summer", "Winter", "Autumn", "Rainy");

4.

5. //access array elements using foreach loop

6. foreach ($season as $element) {

7. echo "$element";

8. echo "</br>";

9. }

10. ?>

Output:
Summer

Winter

Autumn

Rainy

 Mixing Decisions and looping with HTML:

 PHP will only processes things that are enclosed within one of its valid code blocks (such as <?php

and ?>).

 PHP Conditions for HTML Code:

 Let’s consider we only want PHP to display a certain html code if condition is true then we

can do that using the following syntax:

<?php

if(conditions)

{

?>

... HTML CODE ...

<?php

}

 ?>

 Although this may be confusing, it is important to remember that how PHP will process this

code.

 A special syntax is provided for instances where PHP is being used simply to control the

output of standard HTML code:

<?php if(conditions): ?>

... HTML CODE ...

<?php endif; ?>

 Beyond simple if statements, most control structures provide an alternative syntax that allows

us to embed PHP code within standard HTML quickly and easily.

<?php while(conditions) : ?>

... HTML CODE ...

<?php endwhile; ?>

 And an identical syntax for an embedded for loop:

<?php for(init;conditions;increment) : ?>

... HTML CODE ...

<?php endfor; ?>

 Example:

1 2 3 4 5 6

no no no no yes yes

Let’s code

<html>

<body>

<table>

<tr>

<td align="center">1</td>

<td align="center">2</td>

<td align="center">3</td>

<td align="center">4</td>

<td align="center">5</td>

<td align="center">6</td>

</tr>

<tr>

<td align="center">no</td>

<td align="center">no</td>

<td align="center">no</td>

<td align="center">no</td>

<td align="center">yes</td>

<td align="center">yes</td>

</tr>

</table>

</body>

</html>

 PHP code:

<html>

<body>

<table>

<tr>

<?php for($l = 1; $l <=6; $l++) : ?>

<td align="center"><?=$l?></td>

<?php endfor; ?>

</tr>

<tr>

<?php for($l = 1; $l <=6; $l++) : ?>

<td align="center">

<?php if($l >= 5) {

echo "yes";

} else {

echo "no";

}

?>

</td>

<?php endfor; ?>

</tr>

</table>

</body>

</html>

 INSTITUTE OF MANAGEMENT AND INFORMATION TECHNOLOGY
Subject- PHP & MYSQL(MCA 406E)

RACHANA BEHERA

Email-id: rachanabehera2792@gmail.com

UNIT 2

Function:

 What is a function?
 A function is a set of statements that performs a particular function and optionally returns a

value.

 PHP function is a piece of code that can be reused many times. It can take input as argument

list and return value.

 Advantage of PHP Functions:

Code Reusability: PHP functions are defined only once and can be invoked many times, like

in other programming languages.

Less Code: It saves a lot of code because you don't need to write the logic many times. By

the use of function, you can write the logic only once and reuse it.

Easy to understand: PHP functions separate the programming logic. So it is easier to

understand the flow of the application because every logic is divided in the form of functions.

 Define a function:
 There are thousands of built-in functions in PHP. In PHP, we can define Conditional function,

Function within Function and Recursive function also.

 PHP User Defined Functions:

Besides the built-in PHP functions, it is possible to create your own functions.

 A function is a block of statements that can be used repeatedly in a program.

 A function will not execute automatically when a page loads.

 A function will be executed by a call to the function.

 Create a User Defined Function in PHP

 A user-defined function declaration starts with the word function:

 Syntax:

function functionName()

{

 code to be executed;

}

 Example:

<?php

function writeMsg() {

 echo "Hello world!";

}

writeMsg(); // call the function

?>

 Output:

Hello world!

mailto:rachanabehera2792@gmail.com

 PHP Function Arguments:

 We can pass the information in PHP function through arguments which is separated

by comma.

 PHP supports Call by Value (default), Call by Reference, Default argument values

and Variable-length argument list.

 Example to pass single argument in PHP function:

<?php

function sayHello($name){

echo "Hello $name
";

}

sayHello("Sonoo");

sayHello("Vimal");

sayHello("John");

?>

Output:

Hello Sonoo

Hello Vimal

Hello John

 Example to pass two argument in PHP function:

<?php

function sayHello($name,$age)

{

echo "Hello $name, you are $age years old
";

}

sayHello("Sonoo",27);

sayHello("Vimal",29);

sayHello("John",23);

?>

Output:

Hello Sonoo, you are 27 years old

Hello Vimal, you are 29 years old

Hello John, you are 23 years old

 Call by value:
 PHP allows you to call function by value and reference both. In case of PHP call by value,

actual value is not modified if it is modified inside the function.

 Example 1:

<?php

function adder($str2)

{

 $str2 .= 'Call By Value';

}

$str = 'Hello ';

adder($str);

echo $str;

?>

Output:

Hello

 Example 2:

<?php

function increment($i)

{

 $i++;

}

$i = 10;

increment($i);

echo $i;

?>

Output:

10

 Call by reference:
 In case of PHP call by reference, actual value is modified if it is modified inside the function.

In such case, you need to use & (ampersand) symbol with formal arguments. The &

represents reference of the variable.

 Example 1:

<?php

function adder(&$str2)

{

 $str2 .= 'Call By Reference';

}

$str = 'This is ';

adder($str);

echo $str;

?>

Output:

This is Call By Reference

 Example 2:

<?php

function increment(&$i)

{

 $i++;

}

$i = 10;

increment($i);

echo $i;

?>

Output:

11

 Recursive function:
 PHP also supports recursive function call like C/C++. In such case, we call current function

within function. It is also known as recursion.

 Example 1: Printing number

<?php

function display($number)

{

 if($number<=5){

 echo "$number
";

 display($number+1);

 }

}

display(1);

?>

Output:

1

2

3

4

5

 Example 2 : Factorial Number

<?php

function factorial($n)

{

 if ($n < 0)

 return -1; /*Wrong value*/

 if ($n == 0)

 return 1; /*Terminating condition*/

 return ($n * factorial ($n -1));

}

echo factorial(5);

?>

Output:

120

 String Creating and accessing:
 PHP string is a sequence of characters i.e., used to store and manipulate text. PHP supports

only 256-character set and so that it does not offer native Unicode support.

 There are 4 ways to specify a string literal in PHP.

1. Single Quoted:

 We can create a string in PHP by enclosing the text in a single-quote. It is the

easiest way to specify string in PHP. For specifying a literal single quote,

escape it with a backslash (\) and to specify a literal backslash (\) use double

backslash (\\). All the other instances with backslash such as \r or \n, will be

output same as they specified instead of having any special meaning.

 Example:

<?php

 $str='Hello text within single quote';

 echo $str;

?>

Output:

Hello text within single quote

2. Double Quoted:

 In PHP, we can specify string through enclosing text within double quote also.

But escape sequences and variables will be interpreted using double quote

PHP strings.

 Example:

<?php

$str="Hello text within double quote";

echo $str;

?>

Output:

Hello text within double quote

3. Heredoc:

 Heredoc syntax (<<<) is the third way to delimit strings. In Heredoc syntax, an

identifier is provided after this heredoc <<< operator, and immediately a new

line is started to write any text. To close the quotation, the string follows itself

and then again that same identifier is provided. That closing identifier must

begin from the new line without any whitespace or tab.It must contain only

alphanumeric characters and underscores, and must start with an underscore or

a non-digit character.

 Example:

<?php

 $str = <<<Demo

It is a valid example

Demo; //Valid code as whitespace or tab is not valid before closing

identifier

echo $str;

?>

Output:

It is a valid example

4. Newdoc:

 Newdoc is similar to the heredoc, but in newdoc parsing is not done. It is also

identified with three less than symbols <<< followed by an identifier. But here

identifier is enclosed in single-quote, e.g. <<<'EXP'. Newdoc follows the same

rule as heredocs.

 The difference between newdoc and heredoc is that - Newdoc is a single-

quoted stringwhereas heredoc is a double-quoted string.

 Example-1:

<?php

 $str = <<<'DEMO'

 Welcome to javaTpoint.

DEMO;

echo $str;

echo '</br>';

 echo <<< 'Demo' // Here we are not storing string content in variable

str.

 Welcome to javaTpoint.

Demo;

?>

Output:

Welcome to javaTpoint.

Welcome to javaTpoint.

 String Searching:
 The strchr() function searches for the first occurrence of a string inside another string.

 This function is an alias of the strstr() function.

 This function is binary-safe.

 This function is case-sensitive. For a case-insensitive search, use stristr() function.

 Syntax:

strchr(string,search,before_search);

 Parameter Values:

Parameter Description

string Required. Specifies the string to search

search Required. Specifies the string to search for. If this parameter is

a number, it will search for the character matching the ASCII

value of the number

before_search Optional. A boolean value whose default is "false". If set to

"true", it returns the part of the string before the first occurrence

of the search parameter.

 Example:

<html>

<body>

<?php

echo strchr("Hello world!","world",true);

?>

</body>

</html>

Output:

Hello

 Replacing String:
 The str_replace() function replaces some characters with some other characters in a string.

 This function works by the following rules:

 If the string to be searched is an array, it returns an array

 If the string to be searched is an array, find and replace is performed with every array

element

 If both find and replace are arrays, and replace has fewer elements than find, an empty

string will be used as replace

 If find is an array and replace is a string, the replace string will be used for every find

value

 This function is case-sensitive. Use the str_ireplace() function to perform a case-insensitive

search. This function is binary-safe.

 Syntax:

str_replace(find,replace,string,count)

 Parameter Values:

Parameter Description

find Required. Specifies the value to find

replace Required. Specifies the value to replace the value in find

string Required. Specifies the string to be searched

count Optional. A variable that counts the number of replacements

 Example:

<html>

<body>

<p>Search an array for the value "RED", and then replace it with "pink".</p>

<?php

$arr = array("blue","red","green","yellow");

print_r(str_replace("red","pink",$arr,$i));

echo "
" . "Replacements: $i";

?>

</body>

</html>

Output:

Search an array for the value "RED", and then replace it with "pink".

Array ([0] => blue [1] => pink [2] => green [3] => yellow)

Replacements: 1

 Formatting String:
 PHP features the versatile printf() and sprintf() functions that you can use to format string in

many different ways.

 printf():

The printf() function outputs a formatted string.

Syntax:

printf(format,arg1,arg2,arg++)

 Example:

 <?php

 $number=123;

 printf(“%f”,$number);

 ?>

 sprintf():

The sprintf() function writes a formatted string to a variable.

Synatx:

Sprintf(format,arg1,arg2,arg++)

 Example:

 <?php

 $number=123;

 $txt=sprintf(“%f”,$number);

 echo $txt;

 ?>

 String Related Library function:

1) strtolower():

 The strtolower() function returns string in lowercase letter.

 Syntax: string strtolower (string $string)

 Example:

<?php

$str="My name is Rachana";

$str=strtolower($str);

echo $str;

?>

Output:

my name is rachana

2) strtoupper():

 The strtoupper() function returns string in uppercase letter.

 Syntax: string strtoupper (string $string)

 Example:

<?php

$str="My name is Rachana";

$str=strtoupper($str);

echo $str;

?>

Output:

MY NAME IS RACHANA

3) ucfirst():

 The ucfirst() function returns string converting first character into uppercase. It doesn't

change the case of other characters.

 Syntax:

string ucfirst (string $str)

 Example:

<?php

$str="my name is Rachana";

$str=ucfirst($str);

echo $str;

?>

Output:

My name is Rachana.

4) lcfirst():

 The lcfirst() function returns string converting first character into lowercase. It doesn't change

the case of other characters.

 Syntax: string lcfirst (string $str)

 Example:

<?php

$str="MY name IS RACHANA";

$str=lcfirst($str);

echo $str;

?>

Output:

mY name IS RACHANA

5) ucwords():

 The ucwords() function returns string converting first character of each word into uppercase.

 Syntax:

string ucwords (string $str)

 Example:

<?php

$str="my name is Sonoo jaiswal";

$str=ucwords($str);

echo $str;

?>

Output:

My Name Is Sonoo Jaiswal

6) strrev():

 The strrev() function returns reversed string.

 Syntax:

string strrev (string $string)

 Example:

<?php

$str="my name is Sonoo jaiswal";

$str=strrev($str);

echo $str;

?>

Output:

lawsiaj oonoS si eman ym

7) strlen():

 The strlen() function returns length of the string.

 Syntax:

int strlen (string $string)

 Example:

<?php

$str="my name is Sonoo jaiswal";

$str=strlen($str);

echo $str;

?>

Output:

24

ARRAY:

 Anatomy of an Array:
 PHP array is an ordered map (contains value on the basis of key). It is used to hold multiple

values of similar type in a single variable.

 Advantage of PHP Array:

Less Code: We don't need to define multiple variables.

Easy to traverse: By the help of single loop, we can traverse all the elements of an array.

Sorting: We can sort the elements of array.

 There are 3 types of array in PHP:

1. Indexed Array

2. Associative Array

3. Multidimensional Array

 PHP Indexed Array:
 PHP indexed array is an array which is represented by an index number by default. All

elements of array are represented by an index number which starts from 0.

 PHP indexed array can store numbers, strings or any object. PHP indexed array is also known

as numeric array.

 There are two ways to define indexed array:

1st way:

$size=array("Big","Medium","Short");

2nd way:

$size[0]="Big";

$size[1]="Medium";

$size[2]="Short";

Example1:

<?php

$size=array("Big","Medium","Short");

echo "Size: $size[0], $size[1] and $size[2]";

?>

Output:

Size: Big, Medium and Short

Example 2:

<?php

$size[0]="Big";

$size[1]="Medium";

$size[2]="Short";

echo "Size: $size[0], $size[1] and $size[2]";

?>

Output:

Size: Big, Medium and Short

 Traversing PHP Indexed Array:

 We can easily traverse array in PHP using foreach loop.

 Example:

<?php

$size=array("Big","Medium","Short");

foreach($size as $s)

{

 echo "Size is: $s
";

}

?>

Output:

Size is: Big

Size is: Medium

Size is: Short

 Count Length of PHP Indexed Array:

 PHP provides count() function which returns length of an array.

 Example:

<?php

$size=array("Big","Medium","Short");

echo count($size);

?>

Output:

3

 PHP Associative Array:
 PHP allows you to associate name/label with each array elements in PHP using => symbol.

Such way, you can easily remember the element because each element is represented by label

than an incremented number.

 There are two ways to define associative array:

1st way:

$salary=array("Sonoo"=>"550000","Vimal"=>"250000","Ratan"=>"200000");

2nd way:

$salary["Sonoo"]="550000";

$salary["Vimal"]="250000";

$salary["Ratan"]="200000";

Example 1:

<?php

$salary=array("Sonoo"=>"550000","Vimal"=>"250000","Ratan"=>"200000");

echo "Sonoo salary: ".$salary["Sonoo"]."
";

echo "Vimal salary: ".$salary["Vimal"]."
";

echo "Ratan salary: ".$salary["Ratan"]."
";

?>

Output:

Sonoo salary: 550000

Vimal salary: 250000

Ratan salary: 200000

Example 2:

<?php

$salary["Sonoo"]="550000";

$salary["Vimal"]="250000";

$salary["Ratan"]="200000";

echo "Sonoo salary: ".$salary["Sonoo"]."
";

echo "Vimal salary: ".$salary["Vimal"]."
";

echo "Ratan salary: ".$salary["Ratan"]."
";

?>

Output:

Sonoo salary: 550000

Vimal salary: 250000

Ratan salary: 200000

 Traversing PHP Associative Array:

By the help of PHP for each loop, we can easily traverse the elements of PHP associative

array.

Example:

<?php

$salary=array("Sonoo"=>"550000","Vimal"=>"250000","Ratan"=>"200000");

foreach($salary as $k => $v) {

echo "Key: ".$k." Value: ".$v."
";

}

?>

Output:

Key: Sonoo Value: 550000

Key: Vimal Value: 250000

Key: Ratan Value: 200000

 PHP Multidimensional Array:
 PHP multidimensional array is also known as array of arrays. It allows you to store tabular

data in an array.

 PHP multidimensional array can be represented in the form of matrix which is represented by

row * column.

 Example of PHP multidimensional array to display following tabular data:

Id Name Salary

1 sonoo 400000

2 john 500000

3 rahul 300000

 PHP code:

<?php

$emp = array

 (

 array(1,"sonoo",400000),

 array(2,"john",500000),

 array(3,"rahul",300000)

);

for ($row = 0; $row < 3; $row++) {

 for ($col = 0; $col < 3; $col++) {

 echo $emp[$row][$col]." ";

 }

 echo "
";

}

?>

Output:

1 sonoo 400000

2 john 500000

3 rahul 300000

 Some useful Library function:
is_array():

 The is_array() function checks whether a variable is an array or not.

 This function returns true (1) if the variable is an array, otherwise it returns false/nothing.

 Syntax: is_array(variable);

 Example: <html>

<body>

<?php

$a = "Hello";

echo "a is " . is_array($a) . "
";

$b = array("red", "green", "blue");

echo "b is " . is_array($b) . "
";

$c = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

echo "c is " . is_array($c) . "
";

$d = "red, green, blue";

echo "d is " . is_array($d) . "
";

?>

</body>

</html>

Output: a is

 b is 1

 c is 1

 d

 count():
 This function is used to return the number of elements in an array.

 Syntax: count(variable)

 Example: <html>

<body>

<?php

$cars=array("Volvo","BMW","Toyota");

echo count($cars);

?>

</body>

</html>

Output: 3

 sort():

 Sort the elements of the array in ascending order.

 Synatx: sort(variable)

 Example:

<html>

<body>

<?php

$cars=array("Volvo","BMW","Toyota");

sort($cars);

$clength=count($cars);

for($x=0;$x<$clength;$x++)

 {

 echo $cars[$x];

 echo "
";

 }

?>

</body>

</html>

Output:

BMW

Toyota

Volvo

 shuffle():

 The shuffle() function randomizes the order of the elements in the array.

 This function assigns new keys for the elements in the array. Existing keys will be removed

(See Example below).

 Syntax: shuffle(array)

 Example:

<html>

<body>

<?php

$my_array = array("red","green","blue","yellow","purple");

shuffle($my_array);

print_r($my_array);

?>

<p>Refresh the page to see how shuffle() randomizes the order of the elements in

the array.</p>

</body>

</html>

Output:

Array ([0] => green [1] => purple [2] => yellow [3] => red [4] => blue)

Refresh the page to see how shuffle() randomizes the order of the elements in the

array.

 compact():

 The compact() function creates an array from variables and their values.

 Any strings that does not match variable names will be skipped.

 Syntax: compact(var1, var2...)

 Example:

<html>

<body>

<?php

$firstname = "Peter";

$lastname = "Griffin";

$age = "41";

$result = compact("firstname", "lastname", "age");

print_r($result);

?>

</body>

</html>

Output:

Array ([firstname] => Peter [lastname] => Griffin [age] => 41)

 reset():
 The reset() function moves the internal pointer to the first element of the array.

 Related methods:

current() - returns the value of the current element in an array

end() - moves the internal pointer to, and outputs, the last element in the array

next() - moves the internal pointer to, and outputs, the next element in the array

prev() - moves the internal pointer to, and outputs, the previous element in the array

each() - returns the current element key and value, and moves the internal pointer forward

 Syntax: reset(array)

 Example:

<html>

<body>

<?php

$people = array("Peter", "Joe", "Glenn", "Cleveland");

echo current($people) . "
"; // The current element is Peter

echo next($people) . "
"; // The next element of Peter is Joe

echo current($people) . "
"; // Now the current element is Joe

echo prev($people) . "
"; // The previous element of Joe is Peter

echo end($people) . "
"; // The last element is Cleveland

echo prev($people) . "
"; // The previous element of Cleveland is Glenn

echo current($people) . "
"; // Now the current element is Glenn

echo reset($people)."
";//Moves the internal pointer to the first element of the array(peter)

echo next($people) . "
" . "
"; // The next element of Peter is Joe

print_r (each($people));

?>

Output:

Peter

Joe

Joe

Peter

Cleveland

Glenn

Glenn

Peter

Joe

Array ([1] => Joe [value] => Joe [0] => 1 [key] => 1)

 INSTITUTE OF MANAGEMENT AND INFORMATION TECHNOLOGY
Subject- PHP & MYSQL(MCA 406E)

RACHANA BEHERA

Email-id: rachanabehera2792@gmail.com

UNIT 3

Handling Html Form with Php:
 The main way that website users interact with PHP and MySQL is through the use of HTML forms.

 Handling forms is a multipart process.

 First a form is created, into which a user can enter the required details. This data is then sent to the

web server, where it is interpreted, often with some error checking. If the PHP code identifies one or

more fields that require re-entering, the form may be redisplayed with an error message.

 When the code is satisfied with the accuracy of the input, it takes some action that usually involves

the database, such as entering details about a purchase.

 To build a form, you must have at least the following elements:

 An opening <form> and closing </form> tag

 A submission type specifying either a Get or Post method

 One or more input fields

 The destination URL to which the form data is to be submitted

 Capturing Form Data:
 A common and simple way of gathering data is through HTML Forms. Forms are containers

for user input and can contain any number of different input types. The HTML form element

requires a few parameters to work properly.

 Action: this should point to the page that is meant to process the collected data. As soon as

the form is submitted, the browser is redirected to this location, along with all your data.

 Method: this is the method of transportation. There are two choices here: ‘GET’ and ‘POST’.

 Both GET and POST are treated as $_GET and $_POST. These are superglobals, which means that

they are always accessible, regardless of scope - and you can access them from any function, class or

file without having to do anything special.

 $_GET is an array of variables passed to the current script via the URL parameters.

 $_POST is an array of variables passed to the current script via the HTTP POST method.

 $_GET:

 Information sent from a form with the GET method is visible to everyone (all variable

names and values are displayed in the URL).

 GET also has limits on the amount of information to send. The limitation is about

2000 characters. However, because the variables are displayed in the URL, it is

possible to bookmark the page. This can be useful in some cases.

 GET may be used for sending non-sensitive data.

 GET should NEVER be used for sending passwords or other sensitive information!

mailto:rachanabehera2792@gmail.com

 Example:

<html>

<body>

<form action="welcome_get.php" method="get">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

</body>

</html>

"welcome_get.php" :

<html>

<body>

Welcome <?php echo $_GET["name"]; ?>

Your email address is: <?php echo $_GET["email"]; ?>

</body>

</html>

 $_POST:

 Information sent from a form with the POST method is invisible to others (all

names/values are embedded within the body of the HTTP request) and has no limits

on the amount of information to send.

 Moreover POST supports advanced functionality such as support for multi-part binary

input while uploading files to server.

 However, because the variables are not displayed in the URL, it is not possible to

bookmark the page.

 Example:

<html>

<body>

<form action="welcome.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>

</body>

</html>

“welcome.php”

<html>

<body>

Welcome <?php echo $_POST["name"]; ?>

Your email address is: <?php echo $_POST["email"]; ?>

</body>

</html>

 Input Types:
 HTML forms are very versatile and allow you to submit a wide range of input types, from

text boxes and text areas to checkboxes, radio buttons, and more.

 Text boxes: The input type you will probably use most often is the text box. It accepts a

wide range of alphanumeric text and other characters in a single-line box. The general format

of a text box input is as follows:
<input type="text" name="name" size="size" maxlength="length" value="value">

 Text areas: When you need to accept input of more than a short line of text, use a text area.

This is similar to a text box, but, because it allows multiple lines, it has some different

attributes. Its general format looks like this:
<textarea name="name" cols="width" rows="height" wrap="type"></textarea>

 Checkboxes: When you want to offer a number of different options to a user, from which

he can select one or more items, checkboxes are the way to go. Here is the format to use:
<input type="checkbox" name="name" value="value" checked="checked">

If you include the checked attribute, the box is already checked when the browser is

displayed.

 Radio button: Radio buttons are named after the push-in preset buttons found on many

older radios, where any previously depressed button pops back up when another is pressed.

They are used when you want only a single value to be returned from a selection of two or

more options. All the buttons in a group must use the same name and, because only a single

value is returned, you do not have to pass an array.
<input type=”radio” name=”name” value=”value”>

 Hidden fields: Sometimes it is convenient to have hidden form fields so that you can keep

track of the state of form entry. For example, you might wish to know whether a form has

already been submitted. You can achieve this by adding some HTML in your PHP code, such

as the following:
echo '<input type="hidden" name="submitted" value="yes">'

This is a simple PHP echo statement that adds an input field to the HTML form.

 <select>: The <select> tag lets you create a drop-down list of options, offering either single

or multiple selections. It conforms to the following syntax:

<select name="name" size="size" multiple="multiple">

The attribute size is the number of lines to display. Clicking on the display causes a list to

drop down, showing all the options. If you use the multiple attribute, a user can select

multiple options from the list by pressing the Ctrl key when clicking.

 Example:

<form action="login.php" method="post">

<table>

<tr><td>Name:</td><td> <input type="text" name="name"/></td></tr>

<tr><td>Password:</td><td> <input type="password" name="password"/></td></tr>

<tr><td colspan="2"><input type="submit" value="login"/> </td></tr>

</table>

</form>

File: login.php

<?php

$name=$_POST["name"];//receiving name field value in $name variable

$password=$_POST["password"];

echo "Welcome: $name, your password is: $password";

?>

 Dealing with Multi-value filed
 Form fields can send multiple values, rather than a single value.

 The trick is to add square brackets ([]) after the field name in your HTML form. When PHP

engine sees a submitted form field name with square brackets at the end, it creates a nested

array of values within the $_GET or $_POST and $_REQUEST superglobal array, rather than

a single value.

 You can then pull the individual values out of that nested array. So you might create a multi-

select list control as follows:

<select name="mySelection[]" id="mySelection" size="3" multiple="multiple"> ... </select>

 Example:

<html>

<body>

<form action="demo.php"method="post">

<fieldset style="width:200px">

<legend>Personal Info</legend>

First Name

<input type="text"name="txtfname">

Last name

<input type="text"name="txtlname">

</fieldset>

<fieldset style="width:200px">

<legend>Platform Interested</legend>

<input type="checkbox"name="chkplatform[]"value="PHP">PHP

<input type="checkbox"name="chkplatform[]"value="JAVA">JAVA

<input type="checkbox"name="chkplatform[]"value="C">C

</fieldset>

<input type="submit" name="btnsave"value="save">

<input type="reset" name="btnreset"value="Reset">

</form>

</body>

</html>

demo.php:

 <?php

if(isset($_POST["btnsave"]))

{

 $firstname=$_POST["txtfname"];

 $lastname=$_POST["txtlname"];

 $platform=$_POST["chkplatform"];

 echo"<h1>First Name=$firstname</h1>";

 echo"<h1>Last Name=$lastname</h1>";

 foreach($platform as $platforms=>$p)

 { echo"platform interested:$p
";}

}

else

{

 echo"Form data is not submitted";

}

?>

 Generating File uploaded form:
 A PHP script can be used with a HTML form to allow users to upload files to the server.

Initially files are uploaded into a temporary directory and then relocated to a target

destination by a PHP script.

 Information in the phpinfo.php page describes the temporary directory that is used for file

uploads as upload_tmp_dir and the maximum permitted size of files that can be uploaded is

stated as upload_max_filesize. These parameters are set into PHP configuration file php.ini.

 The process of uploading a file follows these steps –

 The user opens the page containing a HTML form featuring a text files, a browse

button and a submit button.

 The user clicks the browse button and selects a file to upload from the local PC.

 The full path to the selected file appears in the text filed then the user clicks the

submit button.

 The selected file is sent to the temporary directory on the server.

 The PHP script that was specified as the form handler in the form’s action attribute

checks that the file has arrived and then copies the file into an intended directory.

 The PHP script confirms the success to the user.

 As usual when writing files it is necessary for both temporary and final locations to

have permissions set that enable file writing. If either is set to be read-only then

process will fail.

 An uploaded file could be a text file or image file or any document.

Working with file and Directories:
 Understanding file & directory:

PHP File System allows us to create file, read file line by line, read file character by character, write

file, append file, delete file and close file.

 Opening and closing a file:
PHP fopen():

 This function is used to open file or URL and returns resource.

 The fopen() function accepts two arguments: $filename and $mode.

 The $filename represents the file to be opended and $mode represents the file mode for

example read-only, read-write, write-only etc.

 Syntax:

resource fopen (string $filename , string $mode [, bool $use_include_path = false

[, resource $context]])

 PHP Open File Mode:

Mode Description

r Opens file in read-only mode. It places the file pointer at the beginning of the file.

r+ Opens file in read-write mode. It places the file pointer at the beginning of the file.

w Opens file in write-only mode. It places the file pointer to the beginning of the file

and truncates the file to zero length. If file is not found, it creates a new file.

w+ Opens file in read-write mode. It places the file pointer to the beginning of the file

and truncates the file to zero length. If file is not found, it creates a new file.

a Opens file in write-only mode. It places the file pointer to the end of the file. If file

is not found, it creates a new file.

a+ Opens file in read-write mode. It places the file pointer to the end of the file. If file

is not found, it creates a new file.

x Creates and opens file in write-only mode. It places the file pointer at the beginning

of the file. If file is found, fopen() function returns FALSE.

x+ It is same as x but it creates and opens file in read-write mode.

c Opens file in write-only mode. If the file does not exist, it is created. If it exists, it is

neither truncated (as opposed to 'w'), nor the call to this function fails (as is the case

with 'x'). The file pointer is positioned on the beginning of the file

c+ It is same as c but it opens file in read-write mode.

 Example:

<?php

$handle = fopen("c:\\folder\\file.txt", "r");

?>

PHP Close File :

 The PHP fclose() function is used to close an open file pointer.

 Syntax:

fclose (open function variable name)

 Example:

<?php

fclose($handle);

?>

PHP Read File:

 PHP provides various functions to read data from file. There are different functions that allow

you to read all file data, read data line by line and read data character by character.

 The available PHP file read functions are given below.

fread()

fgets()

fgetc()

 fread(): The PHP fread() function is used to read data of the file. It requires two arguments:

file resource and file size.

Syntax:

string fread (resource filename , filesize or int $length)

where $length represents length of byte to be read.

Example:

<?php

$filename = "c:\\file1.txt";

$fp = fopen($filename, "r");//open file in read mode

$contents = fread($fp, filesize($filename));//read file

echo "<pre>$contents</pre>";//printing data of file

fclose($fp);//close file

?>

Output:

this is first line

this is another line

this is third line

 fgets():

The PHP fgets() function is used to read single line from the file.

Syntax:

string fgets (resource filename [, int $length])

Example:

<?php

$fp = fopen("c:\\file1.txt", "r");//open file in read mode

echo fgets($fp);

fclose($fp);

?>

Output

this is first line

 fgetc():

The PHP fgetc() function is used to read single character from the file. To get all data using

fgetc() function, use !feof() function inside the while loop.

Syntax:

string fgetc (resource filename)

Example:

<?php

$fp = fopen("c:\\file1.txt", "r");//open file in read mode

while(!feof($fp)) {

 echo fgetc($fp);

}

fclose($fp);

?>

Output

this is first line this is another line this is third line

 feof():

This function checks if the "end-of-file" (EOF) has been reached for an open file. This

function is useful for looping through data of unknown length.

Syntax:

feof(file)

Example:

<?php

$file = fopen("test.txt", "r");

//Output lines until EOF is reached

while(! feof($file)) {

 $line = fgets($file);

 echo $line. "
";

}

fclose($file);

?>

PHP Write File

 PHP fwrite() and fputs() functions are used to write data into file. To write data into file, you

need to use w, r+, w+, x, x+, c or c+ mode.

 The PHP fwrite() function is used to write content of the string into file.

 Syntax:

int fwrite (resource filename , string $string [, int $length])

 Example:

<?php

$fp = fopen('data.txt', 'w');//opens file in write-only mode

fwrite($fp, 'welcome ');

fwrite($fp, 'to php file write');

fclose($fp);

echo "File written successfully";

?>

Output: data.txt

welcome to php file write

 PHP Append to File

You can append data into file by using a or a+ mode in fopen() function. Let's see a simple

example that appends data into data.txt file.

The PHP fwrite() function is used to write and append data into file.

Example:

<?php

$fp = fopen('data.txt', 'a');//opens file in append mode

fwrite($fp, ' this is additional text ');

fwrite($fp, 'appending data');

fclose($fp);

echo "File appended successfully";

?>

Output: data.txt

welcome to php file write this is additional text appending data

 Coping, renaming and deleting a file:
copy() Function:

 The copy() function in PHP is an inbuilt function which is used to make a copy of a specified

file. It makes a copy of the source file to the destination file and if the destination file already

exists, it gets overwritten. The copy() function returns true on success and false on failure.

 Syntax:

bool copy ($source, $dest)

 Example 1:

<?php

 echo copy("textfile1.txt", "textfile2.txt");

?>

Output:

1

 Example 2:

<?php

$srcfile = 'textfile1.txt';

$destfile = 'textfile2.txt';

if (!copy($srcfile, $destfile))

{ echo "File cannot be copied. \n"; }

else

{ echo "File has been copied."; }

?>

Output:

File has been copied.

rename() Function:

 The rename() function in PHP is an inbuilt function which is used to rename a file or

directory.

 It makes an attempt to change an old name of a file or directory with a new name specified by

the user and it may move between directories if necessary.

 If the new name specified by the user already exists, the rename() function overwrites it. The

old name of the file and the new name specified by the user are sent as parameters to the

rename() function and it returns True on success and a False on failure.

 Syntax:

rename(oldname, newname, context)

 Example 1:

<?php

$old_name = "ofile.txt" ;

$new_name = "nfile.txt" ;

rename($old_name, $new_name) ;

?>

Output:

1

 Example 2:

<?php

$old_name = "ofile.txt" ;

$new_name = "nfile.txt" ;

if (!rename($old_name, $new_name))

{

 echo "File cannot be renamed. \n";

}

else

{

echo "File has been renamed.";

}

?>

Output:

File has been renamed.

Delete a file:

 To delete a file by using PHP is very easy. Deleting a file means completely erase a file from

a directory so that the file is no longer exist. PHP has an unlink() function that allows to

delete a file. The PHP unlink() function takes two parameters $filename and $context.

 Syntax:

unlink($filename, $context);

 Example:

<?php

$file="text2.txt";

if(!unlink($file))

{

 echo"File cannot be deleted due to error";

}

else

{

 echo"File has been deleted";

}

?>

Output:

File has been deleted.

 Working with directories:
getcwd():

 The full form of getcwd is "Get Current Working Directory", the function getcwd() is used to

get the name of the current working directory, it does not accept any parameter and returns

the current working directory.

 Syntax:

getcwd();

 It does not accept any parameter.

 Example: PHP code to get the name of the current working directory

<?php

$result = getcwd();

echo "current working directory is: ".$result."
";

?>

Output:

current working directory is: C:\xampplite\htdocs\tutorial

mkdir() :

 The full form of mkdir is "Make Directory", the function mkdir() is used to create a directory.

 Syntax:

 mkdir(dir_path, access_mode, recursive, context);

 Parameter(s):

dir_path – It defines the path to the directory, where we want to create a directory.

access_mode – It is an optional parameter; its default value is 0777 that stands for the widest

possible access. There are 4 values to be set for the access mode,

 The first value should be 0

 The second value sets the permission for the owner

 The third value sets the permission for the owner's user group

 The fourth value sets the permission for everybody else

 The values are 1 for execute permission, 2 for write permission, 4 for reading

permission, we can add values to set the specific permissions, for example, 1+2+4 = 7

= permission for executing, write and read.

 The access_mode parameter is ignored on Windows system.

recursive – It is also an optional parameter; It defines the recursive mode.

context - It is also an optional parameter; It sets the context (a set of options that can modify

the behavior of a stream) of the file handling.

 Example: PHP code to create directory

<?php

$result = mkdir("c:/xampplite/htdocs/tutorial/folder1");

if($result==true)

 echo"directory created successfully";

else

 echo "directory is not created";

?>

Output:

directory created successfully

chdir():

 The full form of chdir is "Change Directory", the function chdir() is used to change the

current working directory.

 Syntax:

mkdir(directory);

directory – It defines the new directory.

 Example: PHP code to change the directory

<?php

$result=getcwd();

echo "current working directory is: ".$result."
";

chdir("c:/xampplite/htdocs/tutorial/folder1");

$result=getcwd();

echo "current working directory is: ".$result."
";

?>

Output:

current working directory is: C:\xampplite\htdocs\tutorial

current working directory is: C:\xampplite\htdocs\tutorial\folder1

 is_dir():

 The full form of is_dir is "Is Directory", the function is_dir() is used to check whether a file

system is a directory or whether a directory exists or not.

 Syntax:

is_dir(directory);

 Example: PHP code to check whether a directory exists or not

<?php

mkdir("c:/xampplite/htdocs/tutorial/folder2");

if(is_dir("c:/xampplite/htdocs/tutorial/folder2"))

 echo"this folder is exists";

else

 echo "folder is not exists";

?>

Output:

 this folder is exists

scandir():

 The full form of scandir is "Scan Directory", the function scandir() is used to get the list of

the files and directories available in the specified directory.

 Syntax:

scandir(directory, sorting_order, context);

 Parameter(s):

directory – It specifies the directory name (or path) from there we have to get the list of the

files and directories

sorting – It is an optional parameter; its default value is o (alphabetically sorting order). 1 can

be used to descending order.

context – It is an optional parameter; it is used to specify the context (a set of options that can

modify the behavior of the stream) to the directory handle.

 Example: PHP code to get and print the list of files and directories of a given directory

<?php

$path="e:/";

$arr1=scandir($path);

print_r($arr1);

?>

Output:

Array

(

 [0] => .

 [1] => ..

 [2] => folder1

 [3] => folder2

 [4] => folder3

 [5] => main.php

)

rmdir():
 It is used to remove directory or folder.

 Syntax:

rmdir(directory);

 Example:

<?php

$path="c:/xampplite/htdocs/tutorial/folder1";

rmdir($path);

?>

 File Uploading & Downloading:
 PHP allows you to upload single and multiple files through few lines of code only.

 PHP file upload features allows you to upload binary and text files both. Moreover, you can

have the full control over the file to be uploaded through PHP authentication and file

operation functions.

 PHP $_FILES: The PHP global $_FILES contains all the information of file. By the help of

$_FILES global, we can get file name, file type, file size, temp file name and errors

associated with file. Here, we are assuming that file name is filename.

$_FILES['filename']['name']: returns file name.

$_FILES['filename']['type']: returns MIME type of the file.

$_FILES['filename']['size']: returns size of the file (in bytes).

$_FILES['filename']['tmp_name']: returns temporary file name of the file which was stored

on the server.

$_FILES['filename']['error']: returns error code associated with this file.

 move_uploaded_file(): Thisfunction moves the uploaded file to a new location. The

move_uploaded_file() function checks internally if the file is uploaded thorough the POST

request. It moves the file if it is uploaded through the POST request.

 Example:

<?php

echo <<<_END

<html><head><title>PHP Form Upload</title></head><body>

<form method='post' action='upload.php' enctype='multipart/form-data'>

Select File: <input type='file' name='filename' size='10'>

<input type='submit' value='Upload'>

</form>

_END;

if ($_FILES)

{

$name = $_FILES['filename']['name'];

move_uploaded_file($_FILES['filename']['tmp_name'], $name);

echo "Uploaded image '$name'
";

}

echo "</body></html>";

?>

File Upload:
<html>

<head>

<title>PHP File Uploading Form</title>

</head>

<body>

<form action="uploader.php" method="post" enctype="multipart/form-data">

<input type="file"name="uploadFile"/>

<input type="submit"name="submitBtn"value="click to uplaod file"/>

</form>

</body>

</html>

uploader.php:

<?php

if(isset($_POST['submitBtn']))

{

 //print_r($_FILES);

 $file_name=$_FILES['uploadFile']['name'];

 $file_size=$_FILES['uploadFile']['size'];

 $file_temp=$_FILES['uploadFile']['tmp_name'];

 $file_type=$_FILES['uploadFile']['type'];

 $file_ext=strtolower(end(explode('.',$file_name)));

 //$allowed_ext=array('jpeg','jpg','png','gif','txt');

 if($file_ext)

 {

 move_uploaded_file($file_temp,'uploaded_files/'.$file_name);

 echo 'File Uploaded successfully';

 }

 else

 {

 echo $file_ext. ' File type is not allowed here.';

 }

}

?>

 PHP Files Downloading:
 <?php

$filePath='uploaded_files/006.jpg';

if(file_exists($filePath))

{

 header('Content-Description:File Transfer');

 header('Content-Type:application/octet-stream');

 header('Content-Disposition:attachment;filename="'.basename($filepPath).'"');

 header('expires:0');

 header('Cache-Control:must_revalidated');

 header('Progma:Public');

 header('content-Length:'.filesize($filePath));

 flush();

 readfile($filePath);

 exit;

}

?>

 INSTITUTE OF MANAGEMENT AND INFORMATION TECHNOLOGY
Subject- PHP & MYSQL(MCA 406E)

RACHANA BEHERA

Email-id: rachanabehera2792@gmail.com

UNIT 4

Session and Cookie:
 Introduction to Session Control:

 A session is a global variable stored on the server.

 Each session is assigned a unique id which is used to retrieve stored values.

 Whenever a session is created, a cookie containing the unique session id is stored on the

user’s computer and returned with every request to the server. If the client browser does not

support cookies, the unique php session id is displayed in the URL.

 Sessions have the capacity to store relatively large data compared to cookies.

 The session values are automatically deleted when the browser is closed. If you want to store

the values permanently, then you should store them in the database.

 Just like the $_COOKIE array variable, session variables are stored in the $_SESSION array

variable. Just like cookies, the session must be started before any HTML tags.

 Session Functionality:
 You want to store important information such as the user id more securely on the server

where malicious users cannot temper with them.

 You want to pass values from one page to another.

 You want the alternative to cookies on browsers that do not support cookies.

 You want to store global variables in an efficient and more secure way compared to passing

them in the URL.

 You are developing an application such as a shopping cart that has to temporary store

information with a capacity larger than 4KB.

 What is a Cookie:
 A cookie is an item of data that a web server saves to your computer’s hard disk via a web

browser.

 It can contain almost any alphanumeric information (as long as it’s under 4 KB) and can be

retrieved from your computer and returned to the server.

 Common uses include session tracking, maintaining data across multiple visits, holding

shopping cart contents, storing login details, and more.

 Because of their privacy implications, cookies can be read only from the issuing domain.

 In other words, if a cookie is issued by, for example, oreilly.com, it can be retrieved only by a

web server using that domain. This prevents other websites from gaining access to details for

which they are not authorized.

 Because of the way the Internet works, multiple elements on a web page can be embedded

from multiple domains, each of which can issue its own cookies. When this happens, they are

referred to as third-party cookies. Most commonly, these are created by advertising

companies in order to track users across multiple websites.

mailto:rachanabehera2792@gmail.com

 Because of this, most browsers allow users to turn cookies off either for the current server’s

domain, third-party servers, or both. Fortunately, most people who disable cookies do so only

for third-party websites.

 Cookies are exchanged during the transfer of headers, before the actual HTML of a web page

is sent, and it is impossible to send a cookie once any HTML has been transferred. Therefore,

careful planning of cookie usage is important.

 A browser/server request/response dialog with cookies:

 This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main page, index.html, at the website

http://www.webserver.com. The first header specifies the file, and the second header

specifies the server.

2. When the web server at webserver.com receives this pair of headers, it returns some of

its own. The second header defines the type of content to be sent (text/html), and the

third one sends a cookie of the name name and with the value value. Only then are the

contents of the web page transferred.

3. Once the browser has received the cookie, it will then return it with every future

request made to the issuing server until the cookie expires or is deleted. So, when the

browser requests the new page /news.html, it also returns the cookie name with the

value value.

4. Because the cookie has already been set, when the server receives the request to send

/news.html, it does not have to resend the cookie, but just returns the requested page.

 Setting Cookies with PHP:
 Setting a cookie in PHP is a simple matter. As long as no HTML has yet been transferred,

you can call the setcookie function.

 Syntax:

setcookie (name, value, expire, path, domain, secure, httponly);

 The setcookie parameters:arameter Description Example

name: The name of the cookie. This is the name that your server will use to access the cookie

on subsequent browser requests (Ex: username)

value: The value of the cookie, or the cookie’s contents. This can contain up to 4 KB of

alphanumeric text (Ex: Hannah)

expire (Optional.): Unix timestamp of the expiration date. Generally, you will probably use

time() plus a number of seconds. If not set, the cookie expires when the browser closes (Ex:

time() + 2592000)

path (Optional.): The path of the cookie on the server. If this is a / (forward slash), the cookie

is available over the entire domain, such as www.webserver.com. If it is a subdirectory, the

cookie is available only within that subdirectory. The default is the current directory that the

cookie is being set in, and this is the setting you will normally use (Ex: /)

domain (Optional.): The Internet domain of the cookie. If this is .webserver.com, the cookie

is available to all of webserver.com and its subdomains, such as www.webserver.com and

images.webserver.com. If it is images.webserver.com, the cookie is available only to

images.webserver.com and its subdomains such as sub.images.webserver.com, but not, say, to

www.webserver.com. (Ex: .webserver.com)

secure (Optional.): Whether the cookie must use a secure connection (https://). If this value

is TRUE, the cookie can be transferred only across a secure connection. The default is

FALSE. (Ex: FALSE)

httponly (Optional; implemented since PHP version 5.2.0.): Whether the cookie must use

the HTTP protocol. If this value is TRUE, scripting languages such as JavaScript cannot

access the cookie. (Not supported in all browsers.) The default is FALSE. (Ex: FALSE)

 So, to create a cookie with the name username and the value Hannah that is accessible across

the entire web server on the current domain, and will be removed from the browser’s cache in

seven days, use the following:

setcookie('username', 'Hannah', time() + 60 * 60 * 24 * 7, '/');

 Accessing a Cookies:
 Reading the value of a cookie is as simple as accessing the $_COOKIE system array. For

example, if you wish to see whether the current browser has the cookie called username

already stored and, if so, to read its value, use the following:

if (isset($_COOKIE['username'])) $username = $_COOKIE['username'];

 Note that you can read a cookie back only after it has been sent to a web browser.

 This means that when you issue a cookie, you cannot read it in again until the browser reloads

the page (or another with access to the cookie) from your website and passes the cookie back

to the server in the process.

 Example:

<?php

$cookie_name = "user";

$cookie_value = "Alex Porter";

Setcookie ($cookie_name, $cookie_value, time () + (86400 * 30), "/"); ?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name]))

{

 echo "Cookie named '" . $cookie_name . "' is not set.";

}

else

{

 echo "Cookie '" . $cookie_name . "' is set.
";

 echo "Value is: " . $_COOKIE[$cookie_name];

}

?>

</body>

</html>

Output: Cookie ‘user’ is set

 Value is: Alex Porter

http://www.webserver.com/
http://www.webserver.com/

 Deleting Cookies:
 To delete a cookie, you must issue it again and set a date in the past. It is important for all

parameters in your new setcookie call except the timestamp to be identical to the parameters

when the cookie was first issued; otherwise, the deletion will fail. Therefore, to delete the

cookie created earlier, you would use the following:

setcookie('username', 'Hannah', time() - 2592000, '/');

 As long as the time given is in the past, the cookie should be deleted. However, I have used a

time of 2,592,000 seconds (one month) in the past in case the client computer’s date and time

are not correctly set.

 Example:

<?php

// set the expiration date to one hour ago

setcookie ("user", "", time() - 3600);

?>

<html>

<body>

<?php

echo "Cookie 'user' is deleted.";

?>

</body>

</html>

Output:
Cookie 'user' is deleted.

 HTTP Authentication:
 HTTP authentication uses the web server to manage users and passwords for the application. It’s

adequate for most applications that ask users to log in, although some applications have

specialized needs or more stringent security requirements that call for other techniques.

 To use HTTP authentication, PHP sends a header request asking to start an authentication dialog

with the browser. The server must have this feature turned on in order for it to work, but because

it’s so common, your server is likely to offer the feature.

 After entering your URL into the browser or visiting via a link, the user will see an

Authentication Required” prompt pop up, requesting two fields: User Name and Password

 Example 1: PHP authentication

<?php

if (isset($_SERVER['PHP_AUTH_USER']) &&

isset($_SERVER['PHP_AUTH_PW']))

{

echo "Welcome User: " . $_SERVER['PHP_AUTH_USER'] .

" Password: " . $_SERVER['PHP_AUTH_PW'];

}

else

{

header('WWW-Authenticate: Basic realm="Restricted Section"');

header('HTTP/1.0 401 Unauthorized');

die("Please enter your username and password");

}

?>

Output:

 If the user fills out the fields, the PHP program runs again from the top. But if the user clicks

the Cancel button, the program proceeds to the following two lines, which send the following

header and an error message:

HTTP/1.0 401 Unauthorized

The die statement causes the text “Please enter your username and password” to be displayed:

 Registering Session variables:
 A session creates a file in a temporary directory on the server where registered session

variables and their values are stored. This data will be available to all pages on the site during

that visit.

 Session variables solve this problem by storing user information to be used across multiple

pages (e.g. username, favorite color, etc). By default, session variables last until the user

closes the browser.

 So; Session variables hold information about one single user, and are available to all pages in

one application.

 Tip: If you need a permanent storage, you may want to store the data in a database.

 Notice that session variables are not passed individually to each new page, instead they are retrieved

from the session we open at the beginning of each page (session_start()).

 Starting a PHP session:

 A PHP session is easily started by making a call to the session_start() function.This

function first checks if a session is already started and if none is started then it starts

one. It is recommended to put the call to session_start() at the beginning of the page.

 Session variables are stored in associative array called $_SESSION[]. These variables

can be accessed during lifetime of a session.

 Example 1: <?php

session_start();

?>

<html>

<body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

$_SESSION["favanimal"] = "cat";

echo "Session variables are set.";

?>

</body>

</html>

Output:

Session variables are set.

 Another way to show all the session variable values for a user session is to run the

following code:

<?php

session_start();

?>

<html>

<body>

<?php

/*// Echo session variables that were set on previous page

echo "Favorite color is " . $_SESSION["favcolor"] . ".
";

echo "Favorite animal is " . $_SESSION["favanimal"] . ".";*/

print_r($_SESSION);

?>

</body>

</html>

Output:

Array ([favcolor] => green [favanimal] => cat)

 Make use of isset() function to check if session variable is already set or not.

 Example:

<?php

session_start();

if(isset($_SESSION['counter'])) {

 $_SESSION['counter'] += 1;}

else {

 $_SESSION['counter'] = 1; }

$msg = "You have visited this page ". $_SESSION['counter'];

$msg .= "in this session.";

?>

<html>

<head>

<title>Setting up a PHP session</title>

</head>

<body>

 <?php echo ($msg); ?>

 </body>

</html>

Output:

You have visited this page 1in this session.

 Destroying the variables and Session:
 A PHP session can be destroyed by session_destroy() function. This function does not need

any argument and a single call can destroy all the session variables.

 If you want to destroy a single session variable then you can use unset() function to unset a

session variable.

 To remove all global session variables and destroy the session, use session_unset() and

session_destroy().

 Example :

<?php

session_start();

?>

<html>

<body>

<?php

// remove all session variables

session_unset();

// destroy the session

session_destroy();

echo"All session variables are now removed and the session is destroyed.";

?>

Output:

All session variables are now removed and the session is destroyed.

 INSTITUTE OF MANAGEMENT AND INFORMATION TECHNOLOGY
Subject- PHP & MYSQL(MCA 406E)

RACHANA BEHERA

Email-id: rachanabehera2792@gmail.com

UNIT 5

Database Connectivity with MYSQL:

 INTRODUCTION TO RDBMS:
 A Relational Database Management System (RDBMS) is a server that manages data for you.

 The data is structured into tables, where each table has some number of columns, each of which has a

name and a type.

 Tables are grouped together into databases, so a James Bond database might have tables for movies,

actors playing Bond, and villains.

 An RDBMS usually has its own user system, which controls access rights for databases (e.g., "user

Fred can update database Bond").

 PHP communicates with relational databases such as MySQL and Oracle using the Structured Query

Language (SQL).

 INTRODUCTION MySQL:
 MySQL is the most popular open-source database system. MySQL is a database.

 The data in MySQL is stored in database objects called tables.

 A table is a collection of related data entries and it consists of columns and rows.

 Databases are useful when storing information categorically. A company may have a database with

the following tables: "Employees", "Products", "Customers" and "Orders".

 CONNECTION WITH MySQL DATABASE:
Create a Connection to a MySQL Database:

 Before you can access data in a database, you must create a connection to the database.

 In PHP, this is done with the mysql_connect() function.

 Syntax: mysql_connect(servername, username, password);

Parameter

Description

Servername

(Optional)

Specifies the server to connect to. Default value is "localhost:3306"

Username

(Optional)

Specifies the username to log in with. Default value is the name of the user that owns

the server process.

Password

(Optional)

Specifies the password to log in with. Default is ""

 Example: <?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

 {

 die('Could not connect: ' . mysql_error());

 }

// some code

?>

mailto:rachanabehera2792@gmail.com

Closing a Connection:

The connection will be closed automatically when the script ends. To close the connection before,

use the mysql_close() function:

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

 {

 die('Could not connect: ' . mysql_error());

 }

// some code

mysql_close($con);

?>

PHP mysql_pconnect () :

 The mysql_pconnect () function opens a persistent MySQL connection.

 This function returns the connection on success, or FALSE and an error on failure. You can hide the

error output by adding a '@' in front of the function name.

 mysql_pconnect() is much like mysql_connect(), but with two major differences:

 This function will try to find a connection that's already open, with the same host, username

and password. If one is found, this will be returned instead of opening a new connection.

 The connection will not be closed when the execution of the script ends (mysql_close() will

not close connection opened by mysql_pconnect()). It will stay open for future use.

 Syntax:

mysql_pconnect(server, user, pwd, clientflag)

Parameter Description

Server

(optional)

Specifies the server to connect to (can also include a port number. e.g. "hostname:port"

or a path to a local socket for the localhost). Default value is "localhost:3306".

User

(optional)

Specifies the username to log in with. Default value is the name of the user that owns

the server process.

Pwd

(optional)

Specifies the password to log in with. Default is "".

Clientflag

(optional)

Can be a combination of the following constants:

MYSQL_CLIENT_SSL - Use SSL encryption.

MYSQL_CLIENT_COMPRESS - Use compression protocol.

MYSQL_CLIENT_IGNORE_SPACE - Allow space after function names.

MYSQL_CLIENT_INTERACTIVE - Allow interactive timeout seconds of inactivity

before closing the connection.

 Example:

<?php

$con = mysql_pconnect("localhost","mysql_user","mysql_pwd");

if (!$con)

 {

 die('Could not connect: ' . mysql_error());

 }

?>

 The reason for using PHP as an interface to MySQL is to format the results of SQL queries in a form

visible in a web page. As long as you can log into your MySQL installation using your username and

password, you can also do so from PHP.

 However, instead of using MySQL’s command line to enter instructions and view output,you will

create query strings that are passed to MySQL. When MySQL returns its response, it will come as a

data structure that PHP can recognize instead of the formatted output you see when you work on the

command line. Further PHP commands can retrieve the data and format it for the web page.
 The process of using MySQL with PHP is as follows:

1. Connect to MySQL and select the database to use.

2. Build a query string.

3. Perform the query.

4. Retrieve the results and output them to a web page.

5. Repeat steps 2 to 4 until all desired data has been retrieved.

6. Disconnect from MySQL.

7. Most websites developed with PHP contain multiple program files that will require access to

MySQL and will thus need the login and password details. Therefore, it’s sensible to create a

single file to store these and then include that file wherever it’s needed.

PERFORMING BASIC DATABASE OPERATION:
 Databases are useful when storing information categorically. A company may have a database with

the following tables: "Employees", "Products", "Customers" and "Orders".

 Database Tables:

 A database most often contains one or more tables. Each table is identified by a name (e.g.

"Customers" or "Orders"). Tables contain records (rows) with data.

 Below is an example of a table called "Persons":

FirstName LastName Age

Peter Gen 45

Glenn John 50

 The table above contains three records (one for each person) and three columns (FirstName,

LastName, Age).

 Queries:

 A query is a question or a request. With MySQL, we can query a database for specific information

and have a recordset returned.

 Look at query: SELECT LastName FROM Persons

 The query above selects all the data in the "LastName" column from the "Persons" table, and will

return a record set like this:

LastName

Gen

John

Insert Data Into a Database Table:

 The INSERT INTO statement is used to add new records to a database table.

 Syntax: It is possible to write the INSERT INTO statement in two forms.

 The first form doesn't specify the column names where the data will be inserted, only their

values:

INSERT INTO table_name

VALUES (value1, value2, value3,...)

 The second form specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

 To get PHP to execute the statements above we must use the mysql_query() function. This function

is used to send a query or command to a MySQL connection.

 Example: In above table named "Persons", with three columns; "Firstname", "Lastname" and "Age".

We will use the same table in this example. The following example adds two new records to the

"Persons" table:

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

{

die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

mysql_query("INSERT INTO Persons (FirstName, LastName, Age)

VALUES ('Peter', 'Griffin', '35')");

mysql_query("INSERT INTO Persons (FirstName, LastName, Age)

VALUES ('Glenn', 'Quagmire', '33')");

mysql_close($con);

?>

 Insert Data From a Form Into a Database:

 Now we will create an HTML form that can be used to add new records to the "Persons"

table. Here is the HTML form:

<html>

<body>

<form action="insert.php" method="post">

Firstname: <input type="text" name="firstname" />

Lastname: <input type="text" name="lastname" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

 When a user clicks the submit button in the HTML form in the example above, the form data

is sent to "insert.php". The "insert.php" file connects to a database, and retrieves the values

from the form with the PHP $_POST variables. Then, the mysql_query() function executes

the INSERT INTO statement, and a new record will be added to the "Persons" table.

 Here is the "insert.php" page:

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

{ die('Could not connect: ' . mysql_error()); }

mysql_select_db("my_db", $con);

$sql="INSERT INTO Persons (FirstName, LastName, Age)

VALUES('$_POST[firstname]','$_POST[lastname]','$_POST[age]')";

if (!mysql_query($sql,$con))

{ die('Error: ' . mysql_error()); }

echo "1 record added";

mysql_close($con)?>

Select Data From a Database Table:
 The SELECT statement is used to select data from a database.

 Syntax: SELECT column_name(s) FROM table_name

 To get PHP to execute the statement above we must use the mysql_query() function. This function is

used to send a query or command to a MySQL connection.

 Example: The following example selects all the data stored in the "Persons" table (The * character

selects all the data in the table):

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

{

 die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM Persons");

while($row = mysql_fetch_array($result))

{

 echo $row['FirstName'] . " " . $row['LastName'];

 echo "
";

}

mysql_close($con);?>

 The example above stores the data returned by the mysql_query() function in the $result variable.

 Next, we use the mysql_fetch_array() function to return the first row from the record set as an array.

Each call to mysql_fetch_array() returns the next row in the record set. The while loop loops through

all the records in the record set. To print the value of each row, we use the PHP $row variable

($row['FirstName'] and $row['LastName']).

 The output of the code above will be:

Peter Gen

Glenn John

Peter Griffin

Glenn Quagmire

 Display the Result in an HTML Table:

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

{ die('Could not connect: ' . mysql_error()); }

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM Persons");

echo "<table border='1'>

<tr>

<th>Firstname</th>

<th>Lastname</th>

</tr>";

while($row = mysql_fetch_array($result)){

 echo "<tr>";

 echo "<td>" . $row['FirstName'] . "</td>";

 echo "<td>" . $row['LastName'] . "</td>";

 echo "</tr>";}

echo "</table>";

mysql_close($con);?>

 The output of the code above will be:

Firstname Lastname

Peter Gen

Glenn John

Glenn Quagmire

Peter Griffin

Update Data In a Database:
 The UPDATE statement is used to modify data in a table.

 The UPDATE statement is used to update existing records in a table.

 Syntax:

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

 To get PHP to execute the statement above we must use the mysql_query() function. This function is

used to send a query or command to a MySQL connection.

 Example:

FirstName LastName Age

Peter Gen 45

Glenn John 50

Peter Griffin 35

Glenn Quagmire 33

 The following example updates some data in the "Persons" table:

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

{

 die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

mysql_query("UPDATE Persons SET Age = '36'

WHERE FirstName = 'Peter' AND LastName = 'Griffin'");

mysql_close($con);

?>

FirstName LastName Age

Peter Gen 45

Glenn John 50

Peter Griffin 36

Glenn Quagmire 33

Delete Data In a Database:

 The DELETE statement is used to delete records in a table.

 The DELETE FROM statement is used to delete records from a database table.

 Syntax:

DELETE FROM table_name

WHERE some_column = some_value

 To get PHP to execute the statement above we must use the mysql_query() function. This function is

used to send a query or command to a MySQL connection.

 Example:deletes all the records in the "Persons" table where LastName='Griffin':

<?php

$con = mysql_connect("localhost","peter","abc123");

if (!$con)

{

 die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

mysql_query("DELETE FROM Persons WHERE LastName='Griffin'");

mysql_close($con);?>

 Output:

FirstName LastName Age

Peter Gen 45

Glenn John 50

Glenn Quagmire 33

 EXECUTING QUERY JOIN:
 MySQL JOINS are used with SELECT statement. It is used to retrieve data from multiple

tables. It is performed whenever you need to fetch records from two or more tables.

 There are three types of MySQL joins:

MySQL INNER JOIN (or sometimes called simple join)

MySQL LEFT OUTER JOIN (or sometimes called LEFT JOIN)

MySQL RIGHT OUTER JOIN (or sometimes called RIGHT JOIN)

MySQL Inner JOIN (Simple Join):

 The MySQL INNER JOIN is used to return all rows from multiple tables where the join

condition is satisfied. It is the most common type of join.

 Syntax:

SELECT columns

FROM table1

INNER JOIN table2

ON table1.column = table2.column;

Image representation:

 Example: Consider two tables "officers" and "students", having the following data.

 Execute the following query:

SELECT officers.officer_name, officers.address, students.course_name

FROM officers

INNER JOIN students

ON officers.officer_id = students.student_id;

 Output:

 The MySQL Inner Join is used to returns only those results from the tables that match the

specified condition and hides other rows and columns. MySQL assumes it as a default Join, so it

is optional to use the Inner Join keyword with the query.

 MySQL Inner Join Example:

Let us first create two tables "students" and "technologies" that contains the following data:

Table: student

Table: technologies

 To select records from both tables, execute the following query:

SELECT students.stud_fname, students.stud_lname, students.city, technologies.technology

FROM students

INNER JOIN technologies

ON students.student_id = technologies.tech_id;

 After successful execution of the query, it will give the following output.

MySQL Left Outer Join:

 The LEFT OUTER JOIN returns all rows from the left hand table specified in the ON condition

and only those rows from the other table where the join condition is fulfilled.

 Syntax:

SELECT columns

FROM table1

LEFT [OUTER] JOIN table2

ON table1.column = table2.column;

 Image representation:

 Let's take an example:

Consider two tables "officers" and "students", having the following data.

 Execute the following query:

SELECT officers.officer_name, officers.address, students.course_name

FROM officers

LEFT JOIN students

ON officers.officer_id = students.student_id;

Output:

MySQL Right Outer Join:

 The MySQL Right Outer Join returns all rows from the RIGHT-hand table specified in the ON

condition and only those rows from the other table where he join condition is fulfilled.

 Syntax:

SELECT columns

FROM table1

RIGHT [OUTER] JOIN table2

ON table1.column = table2.column;

 Image representation:

 Let's take an example:

Consider two tables "officers" and "students", having the following data.

 Execute the following query:

SELECT officers.officer_name, officers.address, students.course_name, students.student_name

FROM officers

RIGHT JOIN students

ON officers.officer_id = students.student_id;

 Output:

MySQL CROSS JOIN:

 MySQL CROSS JOIN is used to combine all possibilities of the two or more tables and returns

the result that contains every row from all contributing tables.

 The CROSS JOIN is also known as CARTESIAN JOIN, which provides the Cartesian product of

all associated tables.

 The Cartesian product can be explained as all rows present in the first table multiplied by all rows

present in the second table.

 It is similar to the Inner Join, where the join condition is not available with this clause.

 MySQL CROSS JOIN Syntax:

The CROSS JOIN keyword is always used with the SELECT statement and must be written after

the FROM clause. The following syntax fetches all records from both joining tables:

SELECT column-lists

FROM table1

CROSS JOIN table2;

 In the above syntax, the column-lists is the name of the column or field that you want to return

and table1 and table2 is the table name from which you fetch the records.

 CROSS JOIN clause for joining two tables

Here, we are going to create two tables "customers" and "contacts" that contains the following

data:

Table: customers

Table: contacts

 To fetch all records from both tables, execute the following query:

SELECT *

FROM customers

CROSS JOIN contacts;

 After successful execution of the query, it will give the following output:

 When the CROSS JOIN statement executed, you will observe that it displays 42 rows. It means

seven rows from customers table multiplies by the six rows from the contacts table.

MySQL SELF JOIN:

 A SELF JOIN is a join that is used to join a table with itself. In the previous sections, we have

learned about the joining of the table with the other tables using different JOINS, such as INNER,

LEFT, RIGHT, and CROSS JOIN. However, there is a need to combine data with other data in

the same table itself. In that case, we use Self Join.

 We can perform Self Join using table aliases. The table aliases allow us not to use the same table

name twice with a single statement. If we use the same table name more than one time in a single

query without table aliases, it will throw an error.

 The table aliases enable us to use the temporary name of the table that we are going to use in the

query. Let us understand the table aliases with the following explanation.

 Suppose we have a table named "student" that is going to use twice in the single query. To aliases

the student table, we can write it as:

Select … FROM student AS S1

INNER JOIN student AS S2;

 SELF JOIN Syntax:

The syntax of self-join is the same as the syntax of joining two different tables. Here, we use

aliases name for tables because both the table name are the same. The following are the syntax of

a SELF JOIN in MySQL:

SELECT s1.col_name, s2.col_name...

FROM table1 s1, table1 s2

WHERE s1.common_col_name = s2.common_col_name;

 SELF JOIN Example

Let us create a table "student" in a database that contains the following data:

 Now, we are going to get all the result (student_id and name) from the table where student_id is

equal, and course_id is not equal. Execute the following query to understand the working of self-

join in MySQL:

SELECT s1.student_id, s1.name

FROM student AS s1, student s2

WHERE s1.student_id=s2.student_id

AND s1.course_id<>s2.course_id;

 After the successful execution, we will get the following output:

PHP Exception Handling:
 Exceptions are used to change the normal flow of a script if a specified error occurs.

 With PHP 5 came a new object oriented way of dealing with errors.

 Exception handling is used to change the normal flow of the code execution if a specified error

(exceptional) condition occurs. This condition is called an exception.

 This is what normally happens when an exception is triggered:

 The current code state is saved

 The code execution will switch to a predefined (custom) exception handler function

 Depending on the situation, the handler may then resume the execution from the saved code

state, terminate the script execution or continue the script from a different location in the code

 We will show different error handling methods:

 Basic use of Exceptions

 Creating a custom exception handler

 Exceptions should only be used with error conditions, and should not be used to jump to another

place in the code at a specified point.

 Basic Use of Exceptions:
 When an exception is thrown, the code following it will not be executed, and PHP will try to

find the matching "catch" block.

 If an exception is not caught, a fatal error will be issued with an "Uncaught Exception"

message.

 Lets try to throw an exception without catching it:

<?php

//create function with an exception

function checkNum($number)

{

if($number>1)

{

 throw new Exception("Value must be 1 or below");

}

 return true;

}

//trigger exception

checkNum(2);

?>

 The code above will get an error like this:

Fatal error: Uncaught exception 'Exception'

with message 'Value must be 1 or below' in C:\webfolder\test.php:6

Stack trace: #0 C:\webfolder\test.php(12):

checkNum(28) #1 {main} thrown in C:\webfolder\test.php on line 6

 Try, throw and catch:

 To avoid the error from the example above, we need to create the proper code to

handle an exception.

 Proper exception code should include:

1. try - A function using an exception should be in a "try" block. If the exception

does not trigger, the code will continue as normal. However if the exception

triggers, an exception is "thrown"

2. throw - This is how you trigger an exception. Each "throw" must have at least one

"catch"

3. catch - A "catch" block retrieves an exception and creates an object containing the

exception information

 Lets try to trigger an exception with valid code:

<?php

//create function with an exception

function checkNum($number) {

 if($number>1) {

 throw new Exception("Value must be 1 or below");

 }

 return true;

}

//trigger exception in a "try" block

try {

 checkNum(2);

 //If the exception is thrown, this text will not be shown

 echo 'If you see this, the number is 1 or below';

}

//catch exception

catch(Exception $e) {

 echo 'Message: ' .$e->getMessage();

}?>

 The code above will get an error like this:

Message: Value must be 1 or below

 Example explained:

The code above throws an exception and catches it:

1. The checkNum() function is created. It checks if a number is greater than 1. If

it is, an exception is throw

2. The checkNum() function is called in a "try" block

3. The exception within the checkNum() function is thrown

4. The "catch" block retrieves the exception and creates an object ($e) containing

the exception information

5. The error message from the exception is echoed by calling $e->getMessage()

from the exception object

 However, one way to get around the "every throw must have a catch" rule is to set a

top level exception handler to handle errors that slip through.

Creating a Custom Exception Class:

 To create a custom exception handler you must create a special class with functions that can

be called when an exception occurs in PHP. The class must be an extension of the exception

class.

 The custom exception class inherits the properties from PHP's exception class and you can

add custom functions to it.

 Lets create an exception class:

<?php

class customException extends Exception

 {

 public function errorMessage()

{

 //error message

 $errorMsg='Error on line '.$this->getLine().' in '.this->getFile().':

'.$this->getMessage().' is not a valid E-Mail address';

 return $errorMsg;

 }

}

$email = "someone@example...com";

try

{

 //check if

 if(filter_var($email,FILTER_VALIDATE_EMAIL)=== FALSE)

 {

 //throw exception if email is not valid

 throw new customException($email);

 }

}

catch (customException $e)

{

 //display custom message

 echo $e->errorMessage();

}

?>

 The new class is a copy of the old exception class with an addition of the errorMessage() function.

Since it is a copy of the old class, and it inherits the properties and methods from the old class, we

can use the exception class methods like getLine() and getFile() and getMessage().

 Example explained:

The code above throws an exception and catches it with a custom exception class:

1. The customException() class is created as an extension of the old exception class. This way it inherits

all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-mail address is

invalid

3. The $email variable is set to a string that is not a valid e-mail address

4. The "try" block is executed and an exception is thrown since the e-mail address is invalid

5. The "catch" block catches the exception and displays the error message

	PHP is very popular language because of its simplicity and open source. There are some important features of PHP given below:
	 PHP $ and $$ Variables:
	 The $var (single dollar) is a normal variable with the name var that stores any value like string, integer, float, etc.
	 The $$var (double dollar) is a reference variable that stores the value of the $variable inside it.
	 Example :
	Example:
	Example: (1)

	 PHP Variable Scope:
	 Local variable:
	 Global variable:
	 Static variable:

	 PHP Constants:
	 PHP constant: define()
	 PHP constant: const keyword
	 Constant() function:
	 Constant vs Variables

	 PHP Data Types:
	 Compound Types:
	 Special Types:

	 OPERATOR AND EXPRESSION:
	 PHP conditional statements allow you to make a decision, based upon the result of a condition. These statements are called as Decision Making Statements or Conditional Statements.
	 There are various ways to use if statement in PHP.
	1. If Statement:
	2. If-else Statement:
	3. If-else-if Statement:
	4. PHP nested if Statement:

	5. Switch:
	 Syntax:

	 PHP for Loop:
	 Example:

	 PHP While Loop:
	 Syntax
	Alternative Syntax
	 Example

	 PHP do-while loop:
	 Syntax
	 Example

	 PHP foreach loop:
	 Syntax
	Syntax

