
Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 1

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Introduction to Object Oriented Paradigm, Procedural Paradigm

Object-oriented programming (OOP) is a programming paradigm based on the concept of

"objects", which may contain data, in the form of fields, often known as attributes; and code, in

the form of procedures, often known as methods. For example, a person is an object which has

certain properties such as height, gender, age, etc. It also has certain methods such as move, talk,

and so on. Detailed features have been discussed in the later part of the lecture.

Difference between Procedural Programming and Object Oriented

Programming

Procedural Programming Object Oriented Programming

In procedural programming, program is

divided into small parts called functions.

In object oriented programming, program is

divided into small parts called objects.

Procedural programming follows top down

approach.

Object oriented programming follows bottom

up approach.

There is no access specifier in procedural

programming.

Object oriented programming have access

specifiers like private, public, protected etc.

Adding new data and function is not easy. Adding new data and function is easy.

Procedural programming does not have any

proper way for hiding data so it is less secure.

Object oriented programming provides data

hiding so it is more secure.

In procedural programming, overloading is not

possible.

Overloading is possible in object oriented

programming.

In procedural programming, function is more

important than data.

In object oriented programming, data is more

important than function.

Procedural programming is based on unreal

world.

Object oriented programming is based on real

world.

Examples: C, FORTRAN, Pascal, Basic etc. Examples: C++, Java, Python, C# etc.

The important features of Object Oriented programming are:

• Inheritance

• Polymorphism

• Data Hiding

• Encapsulation

• Overloading

• Reusability

Let us see a brief overview of these important features of Object Oriented programming

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 2

Srutipragyan Swain, Lecturer, IMIT, Cuttack

But before that it is important to know some new terminologies used in Object Oriented

programming namely

• Objects

• Classes

Objects:

 Object is an instance of a class.

Classes:

These contain data and functions bundled together under a unit. In other words class is a

collection of similar objects. When we define a class it just creates template or Skelton. So no

memory is created when class is created. Memory is occupied only by object.

Example:

Class classname

 {

 Data

 Functions

 };

 main ()

 {

 classname objectname1,objectname2,..;

 }

In other words classes acts as data types for objects.

Member functions:

The functions defined inside the class as above are called member functions.

Data Hiding:

This concept is the main heart of an Object oriented programming. The data is hidden inside the

class by declaring it as private inside the class. When data or functions are defined as private it

can be accessed only by the class in which it is defined. When data or functions are defined as

public then it can be accessed anywhere outside the class. Object Oriented programming gives

importance to protecting data which in any system. This is done by declaring data as private and

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 3

Srutipragyan Swain, Lecturer, IMIT, Cuttack

making it accessible only to the class in which it is defined. This concept is called data hiding.

But one can keep member functions as public.

So above class structure becomes

Example:

Class classname

 {

 private:

 datatype data;

 public:

 Member functions

 };

 main ()

 {

 classname objectname1,objectname2,..;

 }

Encapsulation:

The technical term for combining data and functions together as a bundle is encapsulation.

Inheritance:

Inheritance as the name suggests is the concept of inheriting or deriving properties of an existing

class to get new class or classes. In other words we may have common features or characteristics

that may be needed by number of classes. So those features can be placed in a common tree class

called base class and the other classes which have these charaterisics can take the tree class and

define only the new things that they have on their own in their classes. These classes are called

derived class. The main advantage of using this concept of inheritance in Object oriented

programming is it helps in reducing the code size since the common characteristic is placed

separately called as base class and it is just referred in the derived class. This provide the users

the important usage of terminology called as reusability

Reusability:

This usage is achieved by the above explained terminology called as inheritance. Reusability is

nothing but re- usage of structure without changing the existing one but adding new features or

characteristics to it. It is very much needed for any programmers in different situations.

Reusability gives the following advantages to users

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 4

Srutipragyan Swain, Lecturer, IMIT, Cuttack

It helps in reducing the code size since classes can be just derived from existing one and one

need to add only the new features and it helps users to save their time.

For instance if there is a class defined to draw different graphical figures say there is a user who

want to draw graphical figure and also add the features of adding color to the graphical figure. In

this scenario instead of defining a class to draw a graphical figure and coloring it what the user

can do is make use of the existing class for drawing graphical figure by deriving the class and

add new feature to the derived class namely add the feature of adding colors to the graphical

figure.

Polymorphism and Overloading:

Poly refers many. So Polymorphism as the name suggests is a certain item appearing in different

forms or ways. That is making a function or operator to act in different forms depending on the

place they are present is called Polymorphism.

The structure of C++ program is divided into four different sections:

(1) Header File Section

(2) Class Declaration section

(3) Member Function definition section

(4) Main function section

(1) Header File Section:

 This section contains various header files.

 You can include various header files in to your program using this section.

For example:

include <iostream.h >

 Header file contains declaration and definition of various built in functions as well as object. In

order to use this built in functions or object we need to include particular header file in our

program.

(2) Class Declaration Section:

 This section contains declaration of class.

 You can declare class and then declare data members and member functions inside that class.

For example:

class Demo

{

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 5

Srutipragyan Swain, Lecturer, IMIT, Cuttack

int a, b;

public:

void input();

void output();

}

 You can also inherit one class from another existing class in this section.

(3) Member Function Definition Section:

o This section is optional in the structure of C++ program.

o Because you can define member functions inside the class or outside the class. If all the

member functions are defined inside the class then there is no need of this section.

o This section is used only when you want to define member function outside the class.

o This section contains definition of the member functions that are declared inside the class.

For example:

void Demo:: input ()

{

cout << “Enter Value of A:”;

cin >> a;

cout << “Enter Value of B:”;

cin >> b;

}

(4) Main Function Section:

 In this section you can create an object of the class and then using this object you can call

various functions defined inside the class as per your requirement.

For example:

Void main ()

{

Demo d1;

d1.input ();

d1.output ();

}

A data type determines the type and the operations that can be performed on the data. C++

provides various data types and each data type is represented differently within the computer's

memory. The various data types provided by C++ are built-in data types, derived data types and

user-defined data types as shown in Figure.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 6

Srutipragyan Swain, Lecturer, IMIT, Cuttack

What is variable declaration and variable initialization?

A variable declaration provides assurance to the compiler that there is one variable existing with

the given type and name so that compiler proceed for further compilation without needing

complete detail about the variable. A variable declaration has its meaning at the time of

compilation only, compiler needs actual variable definition at the time of linking of the program.

Initializing a variable means assigning an initial value to that variable.

Some valid declarations are shown here –

int i, j, k;

char c, ch;

float f, salary;

double d;

Here The line int i, j, k; both declares and defines the variables i, j and k; which instructs the

compiler to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists

of an equal sign followed by a constant expression.

Some examples are −
extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 7

Srutipragyan Swain, Lecturer, IMIT, Cuttack

char x = 'x'; // the variable x has the value 'x'.

extern keyword is used to declare a variable at any place.

Expressions

There are two kinds of expressions in C++ −

lvalue Expressions that refer to a memory location is called "lvalue" expression. An

lvalue may appear as either the left-hand or right-hand side of an assignment.

rvalue The term rvalue refers to a data value that is stored at some address in

memory. An rvalue is an expression that cannot have a value assigned to it

which means an rvalue may appear on the right- but not left-hand side of an

assignment.

For example

int a = 20; // a is lvalue and 20 is rvalue

But the following is not a valid statement and would generate compile-time error –

10 = 20;

Operators in C++

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C++ is rich in built-in operators and provide the following types of operators

1 Arithmetic Operators

2 Relational Operators

3 Logical Operators

4 Bitwise Operators

5 Assignment Operators

6 Misc Operators

1. Arithmetic Operators

Assume variable A holds 10 and variable B holds 20, then −

OPERATOR USAGE EXAMPLE

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 8

Srutipragyan Swain, Lecturer, IMIT, Cuttack

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

++ Increment operator, increases integer

value by one

A++ will give 11

-- Decrement operator, decreases integer

value by one

A-- will give 9

2. Relational Operators

Assume variable A holds 10 and variable B holds 20, then –

OPERATOR USAGE EXAMPLE

== Checks if the values of two operands are

equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

> Checks if the value of left operand is

greater than the value of right operand, if

yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less

than the value of right operand, if yes

then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of right

operand, if yes then condition becomes

true.

(A >= B) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is true.

3. Logical Operators

Assume variable A holds 1 and variable B holds 0, then –

OPERATOR USAGE EXAMPLE

&& Called Logical AND operator. If both

the operands are non-zero, then

condition becomes true.

(A && B) is false.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 9

Srutipragyan Swain, Lecturer, IMIT, Cuttack

|| Called Logical OR Operator. If any of

the two operands is non-zero, then

condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its operand.

If a condition is true, then Logical NOT

operator will make false.

!(A && B) is true.

4. Bitwise Operator

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |,

and ^ are as follows –

p Q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then −

OPERATOR USAGE EXAMPLE

& Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) will give 12 which

is 0000 1100

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 10

Srutipragyan Swain, Lecturer, IMIT, Cuttack

| Binary OR Operator copies a bit if it

exists in either operand.

(A | B) will give 61 which is

0011 1101

^ Binary XOR Operator copies the bit if it

is set in one operand but not both.

(A ^ B) will give 49 which

is 0011 0001

~ (Read as

tilde)

Binary Ones Complement Operator is

unary and has the effect of 'flipping' bits.

(~A) will give -61 which is

1100 0011 in 2's

complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give 240 which

is 1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which

is 0000 1111

5. Assignment Operator

OPERATOR USAGE EXAMPLE

= Simple assignment operator, Assigns

values from right side operands to left

side operand.

C = A + B will assign value

of A + B into C

+= Add AND assignment operator, It adds

right operand to the left operand and

assign the result to left operand.

C += A is equivalent to C =

C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand.

C -= A is equivalent to C =

C – A

*= Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand.

C *= A is equivalent to C =

C * A

/= Divide AND assignment operator, It

divides left operand with the right

operand and assign the result to left

operand.

C /= A is equivalent to C =

C / A

%= Modulus AND assignment operator, It

takes modulus using two operands and

assign the result to left operand.

C %= A is equivalent to C =

C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 11

Srutipragyan Swain, Lecturer, IMIT, Cuttack

<< 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C

>> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C &

2

^= Bitwise exclusive OR and assignment

operator.

C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment

operator.

C |= 2 is same as C = C | 2

6. Misc Operators

OPERATOR USAGE

Sizeof sizeof operator returns the size of a variable. For example,

sizeof(a), where ‘a’ is integer, and will return 4.

Condition ? X : Y Conditional operator (?). If Condition is true then it returns value

of X otherwise returns value of Y.

, Comma operator causes a sequence of operations to be

performed. The value of the entire comma expression is the value

of the last expression of the comma-separated list.

. (dot) and ->

(arrow)

Member operators are used to reference individual members of

classes, structures, and unions.

Cast Casting operators convert one data type to another. For example,

int(2.2000) would return 2.

& Pointer operator & returns the address of a variable. For example

&a; will give actual address of the variable.

* Pointer operator * is pointer to a variable. For example *var; will

pointer to a variable var.

OPERATOR PRECEDENCE

Operator precedence determines the order of evaluation of terms in an expression based

on the operator use.

For example, the multiplication operator has higher precedence than the addition operator

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & Right to left

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 12

Srutipragyan Swain, Lecturer, IMIT, Cuttack

sizeof

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ? Right to left

Assignment = += -= *= /= %=>>= <<=

&= ^= |=

Right to left

Comma Left to right

Operator in the same row in the above table are of same precedence and are evaluated

according to their associativity.

if…else statement

An ‘if’ statement consists of a boolean expression followed by one or more statements.

An ‘if’ statement can be followed by an optional ‘else’ statement, which executes when

the boolean expression is false.

Scope Of Variable:-

A scope is a region of the program and broadly speaking there are three places, where variables

can be declared −

• Inside a function or a block which is called local variables,

• In the definition of function parameters which is called formal parameters.

• Outside of all functions which is called global variables.

We will learn what is a function and it's parameter in subsequent chapters. Here let us explain

what are local and global variables.

Local Variables

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 13

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Variables that are declared inside a function or block are local variables. They can be used only

by statements that are inside that function or block of code. Local variables are not known to

functions outside their own. Following is the example using local variables −

#include <iostream>

using namespace std;

int main () {

 // Local variable declaration:

 int a, b;

 int c;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c;

 return 0;

}

Global Variables

Global variables are defined outside of all the functions, usually on top of the program. The

global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for use

throughout your entire program after its declaration. Following is the example using global and

local variables −

#include <iostream>

using namespace std;

// Global variable declaration:

int g;

int main () {

 // Local variable declaration:

 int a, b;

 // actual initialization

 a = 10;

 b = 20;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 14

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 g = a + b;

 cout << g;

 return 0;

}

A program can have same name for local and global variables but value of local variable inside

a function will take preference. For example −

#include <iostream>

using namespace std;

// Global variable declaration:

int g = 20;

int main () {

 // Local variable declaration:

 int g = 10;

 cout << g;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

10

Default Arguments:-

 C++ compiler allows the programmer to assign default values in function prototype. •

When the function is called with less parameter or without parameter the default values are used

for operation.

#include<iostream.h>

 void main()

 {

 int sum(int a,int b=10;int c=15,int d=20);

 int a=2;int b=3; int c=4; int d=5;

 cout<<sum(a,b,c,d);

 cout<<sum(a,b,c);

 cout<<sum(a,b);

 cout<<sum(a);

 cout<<sum(b,c,d);

}

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 15

Srutipragyan Swain, Lecturer, IMIT, Cuttack

int sum(int j,int k,int l,int m)

 {

 return(j+k+l+m);

 }

Inline Function:-

• C++ provides a mechanism called inline function . When a function is declared as inline

the compiler copies the code of the function in calling function i.e function body is

inserted in place of function call during compilation.

• Passing of control between coller and collee function is avoided.

Program - Write a program to find square of a number.

#include <iostream.h>

Inline float square (float j);

 {

 return (j*j);

 }

 void main()

 {

 int p,q;

 cout<<”Enter a number:”;

cin>>p;

q=square(p);

cout<<q;

}

Dynamic Allocation New and Delete Operator:-

 In Dynamic memory allocation, memory is allocated during the execution of the program.

• The new operator not only creates the object but also allocates memory.

• It allocates correct amount of memory from the heap that is also called as a free store.

• The delete operator not only destroys the object but also releases allocated memory.

• The object created and memory allocated by using new operator should be deleted by

delete operator . Otherwise such mismatch operations may corrupt the heap or may crash

the system.

• The compiler should have routines to handle such errors.

• The object created by new operator remains in memory until it is released by delete

operator.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 16

Srutipragyan Swain, Lecturer, IMIT, Cuttack

• Don’t destroy the pointer repetitively. The statement delete x does not destroy the pointer

x but destroys the object associated with it.

• If object is created but not deleted it occupies unnecessary memory. So it is a good habit

to destroy the object & release memory.

• The use of C functions malloc(),calloc(),realloc() are not fit to be used with object

oriented programming.

Example:-

 #include<iostream.h>

 #include<conio.h>

 void main()

 {

 clrscr();

 int *p;

 p=new int[3];

 cout<<”Enter 3 integers:”;

 cin>>*p>>*(p+1)>>*(p+2);

 for(i=0;i<3;i++)

 cout<<*(p+i)<<unsigned(p+i);

 delete[]p;

 }

Classes and Object
Class is the blue print for creating object and it indicates how the data and functions are used

when the class is instantiated or in other words when object is created.

Sample Program using Class

class a{

 int a1,a2;

 public :

 void input(void){

 cout << "data";

 cin >> a1 >> a2;

 }

 void show (void){

 cout << "The data are:";

 cout << a1 << a2;

 }

};

void main(){

 a ob1;//object of class a

 ob1.input();

 ob1.show();

 a ob2;//object of class a

 ob2.input();

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 17

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 ob2.show();

}

Output

dataThe data are:11dataThe data are:22

Constructor:-
 A constructor is a method member having the following properties:-

• The name of the method member must be same as the class name.

• It must not have any return type.

• The method members which are known as constructor can be overloaded.

• The constructor can have default arguments.

• The constructor although they are method members,cannot be called arbitrarily.

• They are invoked at the time of creation of objects.

Example:-

 Class a

 {

 int a1,a2;

 public:

 a(int p,int q)

 {

 a1=q;

 a2=27;

 }

 void show()

 {

 Cout<<a1<<a2;

 }

};

void main()

 {

 a ob(2,3);

 ob.show();

 }

 Destructor:-
 When an object is no longer needed it can be destroyed.Destructor is a member function

having the character ~(tilde) followed by the name of its class and brackets(i.e, ~classname ()).It

is invoked automatically to reclaim all the resources allocated to the object when the object goes

out of scope and it is no longer needed.

 Example:-

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 18

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 #include <iostream.h>

 class Test

 {

 public:

 Test(); //Constructor

 ~Test(); //Destructor

 };

 Test :: Test()

 {

 cout<<”Constructor called”<<endl;

 }

 Test ::~Test ()

 {

 cout<<”Destructor called”<<endl;

 }

void main(){

 Test x;

 cout << “terminating main()” << endl;

}//object x goes out of scope, destructor is called

Output

constructor of class Test called

terminating main()

terminating of class Test called

Access Specifiers
1. private

2. public

3. protected

These keywords are called access specifiers. All the members that follow a keyword belong

to that data type. If no keyword is specified then the members are assumed to have private

privilege.

Example

class a{

 int a6;

 private :

 int a1;

 public :

 int a2;

 private :

 int a3;

 protected :

 int a4;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 19

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 public :

 int a5;

};

void main(){

 a ob;

 ob.a6=1;//cannot be accessed as default data members are private

 ob.a1=2;//cannot be accessed as private data member

 ob.a2=3; //accessible as it is a public data member

 ob.a3=4;//cannot be accessed as private data member

 ob.a4=5;// cannot be accessed as protected data member

 ob.a5=6;//accessible as it is a public data member

}

Access Specifier Accessible To

Own class Members Object of a Class

private: Yes No

protected: Yes No

public: Yes Yes

Defining Member Functions

1. Inside the Class

2. Outside the Class

1. Inside the Class
 Example :

class a{

 int a1,a2;

 int larger(int p, int q){

 if(p>q){

 return p;

 }else{

 return q;

 }

 }

 public :

 void getdata(){

 cin>> a1>>a2;

 }

 void show(){

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 20

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 cout<<"The larger one is "<<larger(a1,a2);

 }

};

void main(){

 a ob1;

 ob1.getdata();

 ob1.show();

}

Any member function within the scope of a class can call another member function.

2. Outside the Class
A member function can be defined outside the class by attaching a membership identity label

which tells the compiler which class the function belongs to.

Syntax:

Return type class name :: function name(){

 Function body

}

Example:

class a{

 int a1,a2;

 public :

 void getdata();

 void disp();

};

void a :: getdata(){

 cin>>a1>>a2;

}

void a :: disp(){

 cout<<a1<<a2;;

}

void main(){

 a ob1;

 ob1.getdata();

 ob1.disp();

}

Friend Function

A non-member function can have access to private members of the class.

It is possible by declaring a non-member function friend to the class, whose private members

are to be accessed.

A friend function is usually has objects as arguments.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 21

Srutipragyan Swain, Lecturer, IMIT, Cuttack

A friend function can be declared as friend anywhere (public, private, protected) inside the

class.

A single function can be friend to many classes.

Example

class a{

 int a1,a2;

 public :

 void getdata(){

 cin>>a1>>a2;

 }

 friend void add(a oa);

};

void add(a ob){

 return (ob.a1+ob.a2);

}

void main(){

 int x;

 a ob2;

 ob2.getdata();

 x=add(ob2);

 cout<<x;

}

Assignment

Q. Write a program to exchange values between two classes by using friend function.

this pointer
this pointer is used for referring the address of currently active object. In C we use &(address

of operator) to access the address of the variable. In C++ we can access current object

address by using this pointer. Whenever a data member and member function arguments are

declared with same name to identify the data member this pointer is used.

#include<iostream.h>

#include<conio.h>

class test{

 int a,b;

 public:

 void show(){

 a=10;

 b=10;

 cout<<"object address"<<this;

 cout<<this->a<<endl;

 cout<<this->b;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 22

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 }

};

void main(){

 test t;

 clrscr();

 t.show();

 getch();

}

Static members

1. Static Data Member

2. Static Member Function

1. Static Data Member
 If a data member of a class is declared static it follows following characteristics:-

a. The static data members are not associated with any objects.

b. It is initialized to zero when the first object of the class is created.

c. The static data members are allocated memory only once and those static data

members are shared by all the objects of the class.

d. The type and scope of each static data member must be defined outside the class

definition.

2. Static Member Function
a. Like member variables member functions can also be declared as static.

b. When a function is defined as static it can access only static member variables and

static member function of the same class.

c. The non-static members are not available to this function.

d. The static member function declared in the public section can be invoked using its

class name without using its object.

e. Only one copy of static member is created in memory for the entire class.

f. It is also possible to invoke static member function using object of the class.

Example

class beta{

 private:

 static int c;

 public:

 static void count(){

 c++;

 }

 static void display(){

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 23

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 count<<c;

 }

};

int beta :: c = 0;//definition and initialization of data

void main(){

 beta ob;

 beta :: display();

 beta :: count();

 beta :: count();

 beta :: display();

}

Constant Member Function
a. The member function of a class can also be declared as constant using const keyword.

b. The constant function cannot modify the data inside the class.

c. The const keyword is written after the function name.

d. If the function tries to change data the compiler will generate error message.

Inheritance

a. This is the technique by which a class can reuse the members of some other class.

b. The members of which class are reused are known as base class

c. The class which reuses is known as the derived class.

Syntax of Derived Class

class DerivedClass : [VisibilityMode] BaseClass

{

 //members of derived class

 //and they can access members of the base class

}

The visibility mode indicates to the compiler that the inherited members of the parent class

will be placed in which area of the child class.

The following are the three possible styles of derivation:

class D : public B//public derivation

{

 //members of D

}

class D : private B//private derivation

{

 //members of D

}

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 24

Srutipragyan Swain, Lecturer, IMIT, Cuttack

class D : B//private derivation by default

{

 //members of D

}

d. In inheritance the private members cannot be inherited.

e. Public members are inherited.

f. The members which are inherited from the parent class are treated as if they are the own

members of child class.

Example

class a{

 int a1;

 public :

 int a2;

 void design(){

 cout<<"**##**";

 }

};

class b : public a

{

 int b1;

 public :

 int b2;

 void show();

};

void b::show()

{

 cout<<a1;//cannot be accessed as private members are not inherited

 cout<<a2;//accessible as public member

 cout<<b1;//accessible as own member

 cout<<b2;//accessible as public member

 design();

}

void main()

{

 b ob;

 ob.a1 = 5;//cannot be accessed as private members are not inherited

 ob.a2 = 10;//accessible as public member

 ob.b1=15;//accessible as own member

 ob.b2=20;//accessible as public member

 ob.show();

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 25

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 ob.design();

}

Types of inheritance
1. Single inheritance

2. Multiple inheritance

3. Hierarchical inheritance

4. Multilevel inheritance

5. Hybrid inheritance

1. Single inheritance

A derived class with only base class.

 //Parent Class

 //Derived Class

2. Multiple inheritance
 Derivation of a class from several (two or more) base classes is called is called multiple

inheritance.

3. Hierarchical inheritance
Derivation of several classes from a single base class i.e. the traits of one class may be

inherited by more than one class, is called hierarchical inheritance.

4. Multilevel inheritance
 Derivation of a class from another derived class is called multilevel inheritance.

A

B

A B

C

A

C B D

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 26

Srutipragyan Swain, Lecturer, IMIT, Cuttack

5. Hybrid Inheritance
Derivation of a class involving more than one form of inheritance is known as hybrid

inheritance.

Virtual Function

class a{

 int b;

 public:

 a()

 {

 b=10;

 }

 virtual void display()

 {

 cout << b;

 }

};

class b : public a

{

 int d;

 public :

 b()

 {

A

B

C

A

B C

D

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 27

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 d=20;

 }

 void display()

 {

 cout << d;

 }

};

void main(){

 a oa, *p;

 b ob;

 p=&oa;

p->display();

 p=&ob;

 p->display();

}

In the above program the virtual keyword before the display function of the base class performs

the runtime binding.

In the first call the display function of base class is executed and in the second call. After

assigning the address of derived class to pointer p, display function derived class is executed.

Virtual Base Class

When a class is declared as virtual, the compiler takes necessary action to avoid duplication of

member variables. So we make a class as virtual if it is a base class that has been used by more

than one derived class as their base class.

Example

class A1

{

 protected :

 int a1;

};

class A2 : public virtual A1

{

 protected :

 int a2;

};

class A3 : public virtual A1

{

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 28

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 protected:

 int a3;

};

class A4 : public virtual A2,A3

{

 int a4;

 public:

 void get()

 {

 cin>>a1>>a2>>a3>>a4;

 }

 void put()

 {

 cout<<a1<<a2<<a3<a4;

 }

};

void main()

{

 A4 ob;

 ob.get();

 ob.put();

}

Function Overloading

Function overloading means we can use the same function name to create functions that perform

different tasks.

It is known a s function polymorphism in object oriented programming.

It is possible to have a set of function with one function name but with argument list.

Example

int add(int,int);

int add(int,int,int);

void main()

{

 int a,b;

 a=add(2,3);

 b=add(4,6,7);

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 29

Srutipragyan Swain, Lecturer, IMIT, Cuttack

}

int add(int p,int q)

{

 return (p+q);

}

int add(int x,int y, int z)

{

 return (x+y+z);

}

Operator Overloading

1. Assignment Operator Overloading

Assignment operator can be overloaded to use it as copy constructor i.e. assigning one

object to another object just like assigning value of one primitive variable to other

primitive variable.

Example

#include <iostream>

using namespace std;

class Distance {

 private:

 int feet; // 0 to infinite

 int inches; // 0 to 12

 public:

 // required constructors

 Distance() {

 feet = 0;

 inches = 0;

 }

 Distance(int f, int i) {

 feet = f;

 inches = i;

 }

 void operator = (const Distance &D) {

 feet = D.feet;

 inches = D.inches;

 }

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 30

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 // method to display distance

 void displayDistance() {

 cout << "F: " << feet << " I:" << inches << endl;

 }

};

int main() {

 Distance D1(11, 10), D2(5, 11);

 cout << "First Distance : ";

 D1.displayDistance();

 cout << "Second Distance :";

 D2.displayDistance();

 // use assignment operator

 D1 = D2;

 cout << "First Distance :";

 D1.displayDistance();

 return 0;

#include <iostream>

using namespace std;

const int SIZE = 10;

class safearay {

 private:

 int arr[SIZE];

 public:

 safearay() {

 register int i;

 for(i = 0; i < SIZE; i++) {

 arr[i] = i;

 }

 }

 int &operator[](int i) {

 if(i > SIZE) {

 cout << "Index out of bounds" <<endl;

 // return first element.

 return arr[0];

 }

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 31

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 return arr[i];

 }

};

int main() {

 safearay A;

 cout << "Value of A[2] : " << A[2] <<endl;

 cout << "Value of A[5] : " << A[5]<<endl;

 cout << "Value of A[12] : " << A[12]<<endl;

 return 0;

}

}

Output

First Distance : F: 11 I:10

Second Distance :F: 5 I:11

First Distance :F: 5 I:11

2. Subscript Operator Overloading

The subscript operator [] is normally used to access array elements. This operator can be

overloaded to enhance the existing functionality of C++ arrays.

Example

#include <iostream>

using namespace std;

const int SIZE = 10;

class safearay {

 private:

 int arr[SIZE];

 public:

 safearay() {

 register int i;

 for(i = 0; i < SIZE; i++) {

 arr[i] = i;

 }

 }

 int &operator[](int i) {

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 32

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 if(i > SIZE) {

 cout << "Index out of bounds" <<endl;

 // return first element.

 return arr[0];

 }

 return arr[i];

 }

};

int main() {

 safearay A;

 cout << "Value of A[2] : " << A[2] <<endl;

 cout << "Value of A[5] : " << A[5]<<endl;

 cout << "Value of A[12] : " << A[12]<<endl;

 return 0;

}

Output

Value of A[2] : 2

Value of A[5] : 5

Index out of bounds

Value of A[12] : 0

3. I/O Operator Overloading

C++ is able to input and output the built-in data types using the stream extraction

operator >> and the stream insertion operator <<. The stream insertion and stream

extraction operators also can be overloaded to perform input and output for user-defined

types like an object.

Here, it is important to make operator overloading function a friend of the class because

it would be called without creating an object.

#include <iostream>

using namespace std;

class Distance {

 private:

 int feet; // 0 to infinite

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 33

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 int inches; // 0 to 12

 public:

 // required constructors

 Distance() {

 feet = 0;

 inches = 0;

 }

 Distance(int f, int i) {

 feet = f;

 inches = i;

 }

 friend ostream &operator<<(ostream &output, const Distance &D) {

 output << "F : " << D.feet << " I : " << D.inches;

 return output;

 }

 friend istream &operator>>(istream &input, Distance &D) {

 input >> D.feet >> D.inches;

 return input;

 }

};

int main() {

 Distance D1(11, 10), D2(5, 11), D3;

 cout << "Enter the value of object : " << endl;

 cin >> D3;

 cout << "First Distance : " << D1 << endl;

 cout << "Second Distance :" << D2 << endl;

 cout << "Third Distance :" << D3 << endl;

 return 0;

}

Output

Enter the value of object :

70

10

First Distance : F : 11 I : 10

Second Distance :F : 5 I : 11

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 34

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Third Distance :F : 70 I : 10

4. Class Member Access Operator Overloading

The class member access operator (->) can be overloaded but it is bit trickier. It is

defined to give a class type a "pointer-like" behavior. The operator -> must be a member

function. If used, its return type must be a pointer or an object of a class to which you

can apply.

The operator-> is used often in conjunction with the pointer-dereference operator * to

implement "smart pointers." These pointers are objects that behave like normal pointers

except they perform other tasks when you access an object through them, such as

automatic object deletion either when the pointer is destroyed, or the pointer is used to

point to another object.

The dereferencing operator-> can be defined as a unary postfix operator. That is, given a

class −

class Ptr {

 //...

 X * operator->();

};

Objects of class Ptr can be used to access members of class X in a very similar manner to

the way pointers are used. For example –

void f(Ptr p) {

 p->m = 10 ; // (p.operator->())->m = 10

}

The statement p->m is interpreted as (p.operator->())->m. Using the same concept,

following example explains how a class access operator -> can be overloaded.

#include <iostream>

#include <vector>

using namespace std;

// Consider an actual class.

class Obj {

 static int i, j;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 35

Srutipragyan Swain, Lecturer, IMIT, Cuttack

public:

 void f() const { cout << i++ << endl; }

 void g() const { cout << j++ << endl; }

};

// Static member definitions:

int Obj::i = 10;

int Obj::j = 12;

// Implement a container for the above class

class ObjContainer {

 vector<Obj*> a;

 public:

 void add(Obj* obj) {

 a.push_back(obj); // call vector's standard method.

 }

 friend class SmartPointer;

};

// implement smart pointer to access member of Obj class.

class SmartPointer {

 ObjContainer oc;

 int index;

 public:

 SmartPointer(ObjContainer& objc) {

 oc = objc;

 index = 0;

 }

 // Return value indicates end of list:

 bool operator++() { // Prefix version

 if(index >= oc.a.size()) return false;

 if(oc.a[++index] == 0) return false;

 return true;

 }

 bool operator++(int) { // Postfix version

 return operator++();

 }

 // overload operator->

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 36

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 Obj* operator->() const {

 if(!oc.a[index]) {

 cout << "Zero value";

 return (Obj*)0;

 }

 return oc.a[index];

 }

};

int main() {

 const int sz = 10;

 Obj o[sz];

 ObjContainer oc;

 for(int i = 0; i < sz; i++) {

 oc.add(&o[i]);

 }

 SmartPointer sp(oc); // Create an iterator

 do {

 sp->f(); // smart pointer call

 sp->g();

 } while(sp++);

 return 0;

}

Output

10

12

11

13

12

14

13

15

14

16

15

17

16

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 37

Srutipragyan Swain, Lecturer, IMIT, Cuttack

18

17

19

18

20

19

21

5. New and Delete operator overloading

The new and delete operators can also be overloaded like other operators in C++. New

and Delete operators can be overloaded globally or they can be overloaded for specific

classes.

• If these operators are overloaded using member function for a class, it means that

these operators are overloaded only for that specific class

• If overloading is done outside a class (i.e. it is not a member function of a class),

the overloaded ‘new’ and ‘delete’ will be called anytime you make use of these

operators (within classes or outside classes). This is global overloading

 Syntax for overloading the new operator :

void* operator new(size_t size);

 The overloaded new operator receives size of type size_t, which specifies the number of

bytes of memory to be allocated. The return type of the overloaded new must be void*.The

overloaded function returns a pointer to the beginning of the block of memory allocated.

 Syntax for overloading the delete operator :

void operator delete(void*);

 The function receives a parameter of type void* which has to be deleted. Function

should not return anything.

 Both overloaded new and delete operator functions are static members by

default. Therefore, they don’t have access to this pointer .

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 38

Srutipragyan Swain, Lecturer, IMIT, Cuttack

// CPP program to demonstrate

// Overloading new and delete operator

// for a specific class

#include<iostream>

#include<stdlib.h>

using namespace std;

class student

{

 string name;

 int age;

public:

 student()

 {

 cout<< "Constructor is called\n" ;

 }

 student(string name, int age)

 {

 this->name = name;

 this->age = age;

 }

 void display()

 {

 cout<< "Name:" << name << endl;

 cout<< "Age:" << age << endl;

 }

 void * operator new(size_t size)

 {

 cout<< "Overloading new operator with size: " << size << endl;

 void * p = ::new student();

 //void * p = malloc(size); will also work fine

 return p;

 }

 void operator delete(void * p)

 {

 cout<< "Overloading delete operator " << endl;

 free(p);

 }

};

int main()

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 39

Srutipragyan Swain, Lecturer, IMIT, Cuttack

{

 student * p = new student("Yash", 24);

 p->display();

 delete p;

}

Output

Overloading new operator with size: 16

Constructor is called

Name:Yash

Age:24

Overloading delete operator

Templates

• Template is simple yet very powerfull tool in C++.

• Templates are the foundation of generic programming, which involves writing code in a

way i.e. independent of a particular type.

• Template is a blueprint or formula for creating a generic class or function.

• Template is of 2 types:-

o Function Template

o Class Template

Function Template:-

1. Function templates are special functions that can operate with generic types.

2. This allows us to create a function template whose functionality can be adapted to more

than one tye or class without repeating the entire code for each type.

3. The simple idea is to pass data type as a parameter so that we don’t need to write same

code for different data types

4. We write a generic function that can be used for different data types.

Function Overloading:-

int add(int x,int y){}

float add(float x,float y){}

double add(double x,double y){}

*Function template:-

template <typename T>

T add(T x,T y)

{}

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 40

Srutipragyan Swain, Lecturer, IMIT, Cuttack

int main()

{

 add(5,4);

add(2.3f,4.2f);

add(5.3232,4324.126)

}

int main

{

 add<int>(3,7);

add<float>(3.3,7.5);

add<double>(3.55,7.66);

}

Example:-

#include<iostream>

int add(int x,int y)

{

return(x+y);

}

float add(float x,float y)

{

return(x+y);

}

double add(double x,double y)

{

return(x+y);

}

int main()

{

cout<<”addition of two integers”<<add(3,4);

return 0;

}

Using Template:-

#include<iostream>

template <typename T>

T add(T x,T y)

{

return(x+y);

}

Int main(){

Cout<<add<int>(3,4);

Cout<<add<float>(3.4f,2.5f);

Cout<<add<double>(3.45,4.23);

return 0;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 41

Srutipragyan Swain, Lecturer, IMIT, Cuttack

}

Using Two different data types:-
#include<iostream>

template <typename T,typename U>

U add(T x,U y)

{

return(x+y);

}

int main(){

Cout<<add<double>(3.0,4.5);

return 0;

}

O/p-7.5

Class Templates:-
Sometimes we need a class implementation i.e. same for all classes oly the data type used are

different.

Normally we would need to create a different class for each data type or create different member

variables and functions with single class.

In class Template we write a class that can be used for different data types.

Class stack

{

Public:

 Int arr[5];

Private:

Push();

Pop();

}

Class stack

{

Public:

 Char arr[5];

Private:

Push();

Pop();

}

Example:

 #include<iostream>

template <typename T>

class weight

{

 private:

 T kg;

 public:

 void setData(T x)

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 42

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 {

 Kg=x;

 }

T getData()

 {

 return kg;

 }

 };

int main()

{

 weight <int>obj;

obj.setData(5);

cout<<obj.getData();

weight <double>obj1;

obj1.setData(4.56575) ;

cout<<obj1.getData();

return 0;

}

Assignment:-Write a class template to pass another a double data type in the above example.

STL
The C++ STL (Standard Template Library) is a generic collection of class templates and

algorithms that allow programmers to easily implement standard data structures like queues,

lists, and stacks.

STL provides many algorithms.

Some of the most used algorithms are :-

1. sort (first_iterator, last_iterator) – To sort the given vector.

2. reverse(first_iterator, last_iterator) – To reverse a vector.

3. *max_element (first_iterator, last_iterator) – To find the maximum element of a vector.

4. *min_element (first_iterator, last_iterator) – To find the minimum element of a vector.

5. accumulate(first_iterator, last_iterator, initial value of sum) – Does the summation of

vector elements

6. count(first_iterator, last_iterator,x) – To count the occurrences of x in vector.

7. find(first_iterator, last_iterator, x) – Points to last address of vector

((name_of_vector).end()) if element is not present in vector.

8. binary_search(first_iterator, last_iterator, x) – Tests whether x exists in sorted vector or

not.

9. lower_bound(first_iterator, last_iterator, x) – returns an iterator pointing to the first

element in the range [first,last) which has a value not less than ‘x’.

http://quiz.geeksforgeeks.org/binary-search-algorithms-the-c-standard-template-library-stl/

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 43

Srutipragyan Swain, Lecturer, IMIT, Cuttack

10. upper_bound(first_iterator, last_iterator, x) – returns an iterator pointing to the first

element in the range [first,last) which has a value greater than ‘x’.

Example

// A C++ program to demonstrate working of sort(),

// reverse()

#include <algorithm>

#include <iostream>

#include <vector>

#include <numeric> //For accumulate operation

using namespace std;

int main()

{

 // Initializing vector with array values

 int arr[] = {10, 20, 5, 23 ,42 , 15};

 int n = sizeof(arr)/sizeof(arr[0]);

 vector<int> vect(arr, arr+n);

 cout << "Vector is: ";

 for (int i=0; i<n; i++)

 cout << vect[i] << " ";

 // Sorting the Vector in Ascending order

 sort(vect.begin(), vect.end());

 cout << "\nVector after sorting is: ";

 for (int i=0; i<n; i++)

 cout << vect[i] << " ";

 // Reversing the Vector

 reverse(vect.begin(), vect.end());

 cout << "\nVector after reversing is: ";

 for (int i=0; i<6; i++)

 cout << vect[i] << " ";

 cout << "\nMaximum element of vector is: ";

 cout << *max_element(vect.begin(), vect.end());

 cout << "\nMinimum element of vector is: ";

 cout << *min_element(vect.begin(), vect.end());

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 44

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 // Starting the summation from 0

 cout << "\nThe summation of vector elements is: ";

 cout << accumulate(vect.begin(), vect.end(), 0);

 return 0;

}

Output

Vector before sorting is: 10 20 5 23 42 15

Vector after sorting is: 5 10 15 20 23 42

Vector before reversing is: 5 10 15 20 23 42

Vector after reversing is: 42 23 20 15 10 5

Maximum element of vector is: 42

Minimum element of vector is: 5

The summation of vector elements is: 115

Sequence Containers

Sequence containers implement data structures which can be accessed sequentially.

• array: Static contiguous array (class template)

• vector: Dynamic contiguous array (class template)

• deque: Double-ended queue (class template)

• forward_list: Singly-linked list (class template)

• list : Doubly-linked list (class template)

Associative Containers
Associative containers implement sorted data structures that can be quickly searched (O(log n)

complexity).

• Set: Collection of unique keys, sorted by keys

(class template)

• Map: Collection of key-value pairs, sorted by keys, keys are unique (class template).

• multiset: Collection of keys, sorted by keys (class template)

• multimap: Collection of key-value pairs, sorted by keys

(class template)

Iterators

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 45

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Iterators are used to point at the memory addresses of STL containers. They are primarily used in

sequence of numbers, characters etc. They reduce the complexity and execution time of program.

Operations of Iterators

1. begin(): this function is used to return the beginning position of the container

2. end():this function is used to return the after end position of the container

3. advance():this function is used to increment the iterator position till the specified number

mentioned in its arguments

4. next():this function returns the new iterator would point after advancing the positions

mentioned in the arguments.

5. prev():this function returns the new iterator that the iterator would point after

decrementing the positions mentioned in its arguments.

6. inserter():This function is used to insert the elements at any position in the container. It

accepts 2 arguments, the container and iterator to position where the elements have to be

inserted.

Vectors

1. Vectors are same as dynamic arrays with the ability to resize itself automatically when an

element is inserted or deleted, with their storage being handled automatically by the

container.

2. Vector elements are placed in contiguous storage so that they can be accessed and traversed

using iterators.

3. In vectors, data is inserted at the end.

4. Inserting at the end takes differential time, as sometimes there may be a need of extending

the array.

5. Removing the last element takes only constant time because no resizing happens.

6. Inserting and erasing at the beginning or in the middle is linear in time.

Example

// C++ program to illustrate the

// iterators in vector

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 vector<int> g1;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 46

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 for (int i = 1; i <= 5; i++)

 g1.push_back(i);

 cout << "Output of begin and end: ";

 for (auto i = g1.begin(); i != g1.end(); ++i)

 cout << *i << " ";

 cout << "\nOutput of cbegin and cend: ";

 for (auto i = g1.cbegin(); i != g1.cend(); ++i)

 cout << *i << " ";

 cout << "\nOutput of rbegin and rend: ";

 for (auto ir = g1.rbegin(); ir != g1.rend(); ++ir)

 cout << *ir << " ";

 cout << "\nOutput of crbegin and crend : ";

 for (auto ir = g1.crbegin(); ir != g1.crend(); ++ir)

 cout << *ir << " ";

 return 0;

}

Output

Output of begin and end: 1 2 3 4 5

Output of cbegin and cend: 1 2 3 4 5

Output of rbegin and rend: 5 4 3 2 1

Output of crbegin and crend : 5 4 3 2 1

Stream Classes

1. The C++ I/O system contains a hierarchy of classes that are used to define various

streams to deal with both the console and disk files.

2. These classes are called stream classes. Following diagram shows the hierarchy of the

stream classes used for input and output operations with the console unit.

3. These classes are declared in the header file iostream. The file should be included in

all programs that communicate with the console unit.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 47

Srutipragyan Swain, Lecturer, IMIT, Cuttack

4. ios is the base class for istream(input stream) and ostream(output stream) which are

base classes for iostream(input/output stream).

5. The class ios is declared as the virtual base class so that only one copy of its members

are inherited by the iostream.

6. The class ios provides the basic support for formatted and unformatted input/output

operations.

7. The class istream provides the facilities for formatted and unformatted input while the

class ostream(through inheritance) provides the facilities for formatted output.

8. The class iostream provides the facilities for handling both input output streams.

9. Three classes namely istream_withassign, ostream_withassign and

iostream_withassign add assignment operators to these classes.

Class Name Contents

ios(General

input/output stream

class)

Contains basic facilities that are ued by all other input and output

classes Also contains a pointer to buffer object(streambuf object)

Declares constants and functions that are necessary for handling

formatted input and output operations

istream(input stream) Inherits the properties of ios Declares input functions such as

get(),getline() and read() Contains overloaded extraction

operator>>

ostream(output

stream)

Inherits the property of ios Declares output functions put() and

write() Contains overloaded insertion operator <<

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 48

Srutipragyan Swain, Lecturer, IMIT, Cuttack

iostream (input/output

stream)

Inherits the properties of ios stream and ostream through

multiple inheritance and thus contains all the input and output

functions

Streanbuf Provides an interface to physical devices through buffer Acts as

a base for filebuf class used ios files

10. Objects cin and cout are used for input and output of data by using the overloading of

>> and << operators.

11. The >> operator is overloaded in the istream class and << is overloaded in the

ostream class.

12. The following is the format for reading data from keyboard:

cin>>variable1>>variable2>>…………..>>variable n, where variable 1 to variable n

are valid C++ variable names that have declared already.

13. This statement will cause the computer to stop the execution and look for the input

data from the keyboard.the input data for this statement would be

data1 data2…………..data n

The input data are separated by white spaces and should match the type of variable in

the cin list spaces, newlines and tabs will be skipped.

14. The operator >> reads the data character by character and assigns it to the indicated

location. The reading for a variable will be terminated at the encounter of a white

space or a character that does not match the destination type. For example consider

the code

int code;

cin>> code;

Suppose the following data is entered as input

42580

the operator will read the characters upto 8 and the value 4258 is assigned to code.

The character D remains in the input streams and will be input to the next cin

statement.

The general form of displaying data on the screen is

cout <<item1<<item2<<…………<<item n

The item item1 through item n may be variables or constants of any basic type.

File Stream Classes

The I/O system of C++ contains a set of classes that defines the file handling

methods. These include ifstream, ofstream and fstream.These classes are derived

from fstreambase and form the corresponding iostream class. These classes ,designed

to manage the disk files are declared in fstream and therefore this file is included in

any program that uses files.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 49

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Steps of File Operations:-

For using a disk file the following things are necessary

1. Suitable name of file

2. Data type and structure

3. Purpose

4. Opening Method

Class Contents

filebuf Its purpose is to set the file buffers to read and write. Contains

Openprot constant used in the open() of file stream

classes.Also contain close() and open() as members.

fstreambase Provides operations common to file streams.Serves as a base

for fstream,ifstream and ofstream class.Contains open() and

close() functions.

ifstream Provides input operations.Contains open() with default input

mode.Inherits the functions get(),getline(),read(),seekg(),tellg()

functions from istream.

ofstream Provides output operations.Contains open() with default output

mode.Inherits put(),seekp(),tellp() and write() functions from

ostream

fstream Provides support for simultaneous input and output

operations.Contains open with default input mode.Inherits all

the functions from istream and ostream classes through

iostream

The filename is a string of characters that makeup a valid filename for the operating

system. It may contain two parts ,primary name and optional period with extension.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 50

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Examples are Input.data, Test.doc etc. For opening a file firstly a file stream is

created and then it is linked to the filename.A file stream can be defined using the

classes ifstream, ofstream and fstream that contained in the header file fstream.The

class to be used depends upon the purpose whether the write data or read data

operation is to be performed on the file.A file can be opened in two ways:

(a) Using the constructor function of class.

(b) Using the member function open() of the class.

The first method is useful only when one file is used in the stream.The second method

is used when multiple files are to be managed using one stream.

Opening Files using Constructor:

While using constructor for opening files,filename is used to initialize the file stream

object.This involves the following steps

(i) Create a file stream object to manage the stream using the appropriate class i.e

the class ofstream is used to create the output stream and the class ifstream to

create the input stream.

(ii) Initialize the file object using desired file name.

For example, the following statement opens a file named “results” for output:

ofstream outfile(“results”); //output only

This create outfile as an ofstream object that manages the output stream.

Similarly ,the following statement declares infile as an ifstream object and

attaches it to the file data for reading (input).

ifstream infile (“data”); //input only

The same file name can be used for both reading and writing data.

For example

Program1 …………………..

……………….

ofstream outfile (“salary”); //creates outfile and connects salary to it

………………

…………………..

Program 2

………………

……………

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 51

Srutipragyan Swain, Lecturer, IMIT, Cuttack

ifstream infile (“salary”); //creates infile and connects salary to it

………………..

………………….

The connection with a file is closed automatically when the stream object

expires i.e when a program terminates.In the above statement ,when the

program 1 is terminated,the salary file is disconnected from the outfile

stream.The same thing happens when program 2 terminates.

Instead of using two programs,one for writing data and another for reading

data ,a single program can be used to do both operations on a file.

…………

……………. outfile.close(); //disconnect salary from outfile and connect to

infile ifstream infile (“salary”);

 ………….

……………

infile.close();

 The following program uses a single file for both reading and writing the data

.First it take data from the keyboard and writes it to file.After the writing is

completed the file is closed.The program again opens the same file read the

information already written to it and displays the same on the screen.

Program

WORKING WITH SINGLE FILE

//Creating files with constructor function

#include <iostream.h>

#include<fstream.h>

int main(){

ofstream outf(“ITEM”);

cout << “enter item name”;

char name[30];

cin>>name;

outf<<name<<”\n”;

cout<<”enter item cost”;

float cost;

cin>>cost;

outf<<cost<<”\n”;

outf.close();

ifstream inf(“item”);

inf>>name;

inf>>cost;

cout<<”\n”;

cout<<”item name: ”<<name<<”\n”;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 52

Srutipragyan Swain, Lecturer, IMIT, Cuttack

cout<<”item cost:”<<cost<<”\n”;

inf.close();

return 0;

}

 Opening Files using open()

 The function open() can be used to open multiple files that uses the same stream object.

For example to process a set of files sequentially,in such case a single stream object can

be created and can be used to open each file in turn.

This can be done as follows;

File-stream-class stream-object;

stream-object.open (“filename”);

The following example shows how to work simultaneously with multiple files

Program

#include<iostream.h>

#include<fstream.h>

int main()

{

 ofstream fout;

 fout.open("country");

 fout<<"United States of America \n";

 fout<<"United Kingdom";

 fout<<"South Korea";

 fout.close();

 fout.open("capital");

 fout<<"Washington \n";

 fout<<"London \n";

 fout<<"Seoul\n";

 fout.close();

 const int N=80;

 char line[N];

 ifstream fin;

 fin.open("country");

 cout<<"contents of country file\n";

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 53

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 while(fin)

 {

 fin.getline(line,N);

 cout<<line;

 }

 fin.close();

 fin.open("capital");

 cout<<"contents of capital file \n";

 while(fin)

 {

 fin.getline(line,N);

 cout<<line;

 }

 fin.close();

 return 0;

}

Finding End of File:

While reading a data from a file,it is necessary to find where the file ends i.e end of

file.The programmer cannot predict the end of file,if the program does not detect end of

file,the program drops in an infinite loop.To avoid this,it is necessary to provide correct

instruction to the program that detects the end of file.Thus when end of file of file is

detected,the process of reading data can be easily terminated. An ifstream object such as

fin returns a value of 0 if any error occurs in the file operation including the end-of – file

condition.Thus the while loop terminates when fin returns a value of zero on reaching the

end-of –file condition.There is an another approach to detect the end of file condition.The

statement

if(fin1.eof() !=0)

{

exit(1);

}

returns a non zero value if end of file condition is encountered and zero

otherwise.Therefore the above statement terminates the program on reaching the end of

file.

File Opening Modes:

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 54

Srutipragyan Swain, Lecturer, IMIT, Cuttack

The ifstream and ofstream constructors and the function open() are used to open the

files.Upto now a single arguments a single argument is used that is

filename.However,these functions can take two arguments, the second one for specifying

the file mode.The general form of function open() with two arguments is:

stream-object.open(“filename”,mode);

The second argument mode specifies the purpose for which the file is opened.The

prototype of these class member functions contain default values for second argument

and therefore they use the default values in the absence of actual values.The default

values are as follows :

ios::in for ifstream functions meaning open for reading only.

ios::out for ofstream functions meaning open for writing only.

The file mode parameter can take one of such constants defined in class ios.The

following table lists the file mode parameter and their meanings.

Parameter Meaning

ios::app Append to end-of-file

ios::ate Go to end-of-file on opening

ios::binary Binary file

ios::in Open file for reading only

ios::nocreate Open fails if file the file does not exist

ios::noreplace Open fails if the file already exists

ios::out Open file for writing only

ios::trunk Delete the contents of the file if it exists

File Pointers and Manipulators:

Each file has two pointers known as file pointers,one is called the input pointer and the

other is called output pointer..The input pointer is used for reading the contents of of a

given file location and the output pointer is used for writing to a given file location.Each

time an input or output operation takes place,the appropriate pointer is automatically

advanced.

Default actions:

When a file is opened in read-only mode,the input pointer is automatically set at the

beginning so that file can be read from the start.Similarly when a file is opened in write-

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 55

Srutipragyan Swain, Lecturer, IMIT, Cuttack

only mode the existing contents are deleted and the output pointer is set at the

beginning.This enables us to write the file from start.In case an existing file is to be

opened in order to add more data,the file is opened in ‘append’ mode.This moves the

pointer to the end of file.

Functions for Manipulations of File pointer:

All the actions on the file pointers takes place by default.For controlling the movement of

file pointers file stream classes support the following functions

seekg() Moves get pointer (input)to a specified location.

seekp() Moves put pointer (output) to a specified location.

tellg() Give the current position of the get pointer.

tellp() Give the current position of the put pointer.

For example, the statement

infile.seekg(10);

moves the pointer to the byte number 10.The bytes in a file are numbered beginning from

zero.Therefore ,the pointer to the 11th byte in the file.Consider the following statements:

ofstream fileout;

fileout.open(“hello”,ios::app);

int p=fileout.tellp();

On execution of these statements,the output pointer is moved to the end of file “hello”

And the value of p will represent the number of bytes in the file.

Specifying the Offset:

‘Seek’ functions seekg() and seekp() can also be used with two arguments as follows:

seekg (offset,refposition);

seekp (offset,refposition);

The parameter offset represents the number of bytes the file pointer is to be moved from

the location specified by the parameter refposition.The refposition takes one of the

following three constants defined in the ios class:

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 56

Srutipragyan Swain, Lecturer, IMIT, Cuttack

ios::beg Start of file

ios::cur Current position of the pointer

ios::end End of file

The seekg() function moves the associated file’s ‘get’ pointer while the seekp() function

moves the associated file’s ‘put ‘pointer.The following table shows some sample pointer

offset calls and their actions.fout is an ofstream object.

Seek Call Action

fout.seekg(o,ios::beg) Go to start

fout.seekg(o,ios::cur) Stay at the current position

fout.seekg(o,ios::end) Go to the end of file

fout.seekg(m,ios::beg) Move to (m+1)th byte in the file

fout.seekg(m,ios::cur) Go forward by m byte from current position

fout.seekg(-m,ios::cur) Go backward by m bytes from current position.

fout.seekg(-m,ios::end) Go backward by m bytes from the end

Pointer

A pointer is a variable whose value is the address of another variable.

Syntax:

type *var-name;

The actual data type of the value of all pointers, whether integer, float, character, or

otherwise, is the same, a long hexadecimal number that represents a memory address.

The only difference between pointers of different data types is the data type of the

variable or constant that the pointer points to.

Example:

#include <iostream>

using namespace std;

int main () {

 int var = 20; // actual variable declaration.

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 57

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 int *ip; // pointer variable

 ip = &var; // store address of var in pointer variable

 cout << "Value of var variable: ";

 cout << var << endl;

 // print the address stored in ip pointer variable

 cout << "Address stored in ip variable: ";

 cout << ip << endl;

 // access the value at the address available in pointer

 cout << "Value of *ip variable: ";

 cout << *ip << endl;

 return 0;

}

Output

Value of var variable: 20

Address stored in ip variable: 0xbfc601ac

Value of *ip variable: 20

Address of Operator &

The & is a unary operator that returns the memory address of its operand. For example, if

var is an integer variable, then &var is its address. This operator has the same precedence

and right-to-left associativity as the other unary operators.

You should read the & operator as "the address of" which means &var will be read as

"the address of var".

Indirection Operator *

It is a unary operator that returns the value of the variable located at the address specified

by its operand.

Example

#include <iostream>

using namespace std;

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 58

Srutipragyan Swain, Lecturer, IMIT, Cuttack

int main () {

 int var;

 int *ptr;

 int val;

 var = 3000;

 // take the address of var

 ptr = &var;

 // take the value available at ptr

 val = *ptr;

 cout << "Value of var :" << var << endl;

 cout << "Value of ptr :" << ptr << endl;

 cout << "Value of val :" << val << endl;

 return 0;

}

Output

Value of var :3000

Value of ptr :0xbff64494

Value of val :3000

Pointers Vs Arrays

Pointers and arrays are interchangeable in many cases. For example, a pointer that points

to the beginning of an array can access that array by using either pointer arithmetic or

array-style indexing. Consider the following program −

#include <iostream>

using namespace std;

const int MAX = 3;

int main () {

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 59

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 int var[MAX] = {10, 100, 200};

 int *ptr;

 // let us have array address in pointer.

 ptr = var;

 for (int i = 0; i < MAX; i++) {

 cout << "Address of var[" << i << "] = ";

 cout << ptr << endl;

 cout << "Value of var[" << i << "] = ";

 cout << *ptr << endl;

 // point to the next location

 ptr++;

 }

 return 0;

}

Output

Address of var[0] = 0xbfa088b0

Value of var[0] = 10

Address of var[1] = 0xbfa088b4

Value of var[1] = 100

Address of var[2] = 0xbfa088b8

Value of var[2] = 200

However, pointers and arrays are not completely interchangeable. For example, consider

the following program –

#include <iostream>

using namespace std;

const int MAX = 3;

int main () {

 int var[MAX] = {10, 100, 200};

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 60

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 for (int i = 0; i < MAX; i++) {

 *var = i; // This is a correct syntax

 var++; // This is incorrect.

 }

 return 0;

}

It is perfectly acceptable to apply the pointer operator * to var but it is illegal to modify

var value. The reason for this is that var is a constant that points to the beginning of an

array and can not be used as l-value.

Because an array name generates a pointer constant, it can still be used in pointer-style

expressions, as long as it is not modified. For example, the following is a valid statement

that assigns var[2] the value 500 –

*(var + 2) = 500;

Function Pointers

A function pointer is a variable that stores the address of a function that can later be

called through that function pointer.

Syntax

void (*foo)(int);

Example

#include <iostream.h>

void my_int_func(int x)

{

 Cout<<x;

}

int main()

{

 void (*foo)(int);

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 61

Srutipragyan Swain, Lecturer, IMIT, Cuttack

 foo = &my_int_func;

 /* call my_int_func (note that you do not need to write (*foo)(2)) */

 foo(2);

 /* but if you want to, you may */

 (*foo)(2);

 return 0;

}

Pointer to Object

Program

class a

{

 int a1;

 public :

 int a2;

 void show()

 {

 cout<<a1<<a2;

 }

};

void main()

{

 a oa;

 a *pa;

 oa.a1=5;//Not accessible

 oa.a2=10//accessible

 pa->a2=20;//not accessible as pointer is not assigned any object

 pa=&oa;

 pa->a2=20;//accessible

 pa->a1=10;//not accessible as private

 pa->show();

}

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 62

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Program

class a

{

 public :

 void show()

 {

 cout<<"A SHOW";

 }

 void disp()

 {

 cout<<"A DISP";

 }

};

class b : public a

{

 public :

 void show()

 {

 cout<<"B SHOW";

 }

 void disp()

 {

 cout<<"B DISP";

 }

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 63

Srutipragyan Swain, Lecturer, IMIT, Cuttack

};

void main()

{

 b ob;

 ob.show();//B SHOW

 a oa;

 oa.show();//A SHOW

 a *pa;

 pa=&oa;

 pa->show();//A SHOW

 pa->disp();//A DISP

 pa=&ob;

 pa->show();

 pa->disp();

}

New Operator

The new operator is used to create object.

Syntax

Pointer variable = new datatype;

Here the pointer variable is the pointer of any built-in data type including array or any

user defined data type including class and structure.

New operator allocate sufficient memory to hold data object.

Example :- int *p = new int;

We can also initialize the memory by using new operator. The syntax is:

Pointer variable = new type value;

Example:- &p=new int(25);

The new operator can be used to create memory space for any data type including user

defined data type. For creating array dynamic syntax is

pointer variable = new type (size);

Lecture Notes : Object Oriented Programming using C++, 2nd Semester, MCA
P a g e | 64

Srutipragyan Swain, Lecturer, IMIT, Cuttack

Example : - int *p=new int(r);

Delete Operator

The delete operator is used to deallocate the memory created by new operator at runtime.

Once the memory is no longer needed it should be free so that it becomes available for

reuse.

Syntax

delete pointer_variable;

Example:- delete p;

In the delete operator the pointer variable is the pointer that points to the data object

created by the new.

Advantages of new operator over malloc function

1. It automatically compute size of data object so no need to use size of operator.

2. It automatically return the current pointer type so there is no need to use type cast.

3. It is possible to initialize object while creating memory space.

4. The new and delete operation can be overloaded.

……………………………

